[en] Human memory is an enigmatic component of cognition which many researchers have attempted to comprehend. Accumulating studies on functional connectivity see brain as a complex dynamic unit with positively and negatively correlated networks in perfect coherence during a task. We aimed to examine coherence of network connectivity during visual memory encoding and retrieval in the context of education. School Educated (SE) and College Educated (CE) healthy volunteers (n = 60) were recruited and assessed for visual encoding and retrieval. Functional connectivity using seed to voxel based connectivity analysis of the posterior cingulate cortex (PCC) was evaluated. We noticed that there were reciprocal dynamic changes in both dorsolateral prefrontal cortex (DLPFC) region and PCC regions during working memory encoding and retrieval. In agreement with the previous studies, there were more positively correlated regions during retrieval compared to encoding. The default mode network (DMN) networks showed greater negative correlations during more attentive task of visual encoding. In tune with the recent studies on cognitive reserve we also found that number of years of education was a significant factor influencing working memory connectivity. SE had higher positive correlation to DLPFC region and lower negative correlation to DMN in comparison with CE during encoding and retrieval.
Disciplines :
Neurosciences & behavior
Author, co-author :
Panda, Rajanikant ; Université de Liège - ULiège > GIGA Consciousness - Coma Science Group
Bharath, Rose Dawn; National Institute of Mental Health and Neuro Science
George, Lija; National Institute of Mental Health and Neuro Science
Kanungo, Silpa; National Institute of Mental Health and Neuro Science
Reddy, Rajakumari P.; National Institute of Mental Health and Neuro Science
Upadhyay, Neeraj; National Institute of Mental Health and Neuro Science
Thamodharan, Arumugam; National Institute of Mental Health and Neuro Science
Rajeshwaran, Jamuna; National Institute of Mental Health and Neuro Science
Rao, Shobini L.; National Institute of Mental Health and Neuro Science
Gupta, Arun Kumar; National Institute of Mental Health and Neuro Science
Language :
English
Title :
Unraveling Brain Functional Connectivity of encoding and retrieval in the context of education
Addis D.R., McAndrews M.P. Prefrontal and hippocampal contributions to the generation and binding of semantic associations during successful encoding. Neuroimage 2006, 33(4):1194-1206.
Bastin C., Yakushev I., Bahri M.A., Fellgiebel A., Eustache F., Landeau B., Salmon E. Cognitive reserve impacts on inter-individual variability in resting-state cerebral metabolism in normal aging. NeuroImage 2012, 63(2):713-722.
Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007, 37(1):90-101.
Bosch B., Bartrés-Faz D., Rami L., Arenaza-Urquijo E.M., Fernández-Espejo D., Junqué C., Molinuevo J.L. Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer's disease. Cortex 2010, 46(4):451-461.
Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain's default network. Annals of the New York Academy of Sciences 2008, 1124(1):1-38.
Buckner R.L., Koutstaal W., Schacter D.L., Wagner A.D., Rosen B.R. Functional-anatomic study of episodic retrieval using fMRI. Neuroimage 1998, 7(3):151-162.
Buckner R.L., Raichle M.E., Miezin F.M., Petersen S.E. Functional anatomic studies of memory retrieval for auditory words and visual pictures. The Journal of Neuroscience 1996, 16(19):6219-6235.
Champod A.S., Petrides M. Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes. Proceedings of the National Academy of Sciences 2007, 104(37):14837-14842.
Champod A.S., Petrides M. Dissociation within the frontoparietal network in verbal working memory: A parametric functional magnetic resonance imaging study. The Journal of Neuroscience 2010, 30(10):3849-3856.
Chanraud S., Pitel A., Pfefferbaum A., Sullivan E.V. Disruption of functional connectivity of the default-mode network in alcoholism. Cerebral Cortex 2011, 10(1093):1-12.
Collette F., Salmon E., Van der Linden M., Chicherio C., Belleville S., Degueldre C., et al. Regional brain activity during tasks devoted to the central executive of working memory. Cognitive Brain Research 1999, 7(3):411-417.
Craik F.I., Tulving E. Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General 1975, 104(3):268-294.
Damoiseaux J.S., Rombouts S.A.R.B., Barkhof F., Scheltens P., Stam C.J., Smith Stephen M., Beckmann C.F. Consistent resting-state networks across healthy subjects. Proceedings of the national academy of sciences 2006, 103(37):13848-13853.
Deiber M.P., Wise S.P., Honda M., Catalan M.J., Grafman J., Hallett M. Frontal and parietal networks for conditional motor learning: A positron emission tomography study. Journal of Neurophysiology 1997, 78(2):977-991.
Eichenbaum H. The cognitive neuroscience of memory: An introduction 2011, OUP USA.
Esposito F., Aragri A., Latorre V., Popolizio T., Scarabino T., Cirillo S., et al. Does the default-mode functional connectivity of the brain correlate with working-memory performances?. Archives Italiennes de Biologie 2009, 147(1/2):11-20.
Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience 2007, 8:700-711.
Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(27):9673-9678.
Fox M.D., Zhang D., Snyder A.Z., Raichle M.E. The global signal and observed anticorrelated resting state networks. Journal of Neurophysiology 2009, 101(6):3270-3283.
Fransson A. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping 2005, 26(1):15-29.
Friston K.J., Ashburner J.T., Kiebel S.J., Nichols T.E., Penny W.D. Statistical parametric mapping: The analysis of functional brain images: The analysis of functional brain images 2011, Academic Press.
Fukushima T., Hasegawa I., Miyashita Y. Prefrontal neuronal activity encodes spatial target representations sequentially updated following nonspatial target-shift cues. J Neurophysiol 2003, 91:1367-1380.
Fuster J.M. Network memory. Trends in neurosciences 1997, 20(10):451-459.
Gerton B.K., Brown T.T., Meyer-Lindenberg A., Kohn P., Holt J.L., Olsen R.K., et al. Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 2004, 42(13):1781-1787.
Gordon M.E., Breeden A.L., Bean S.E., Vaidya C.J. Working memory-related changes in functional connectivity persist beyond task disengagement. Human Brain Mapping 2012, 1-14.
Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences 2003, 100(1):253-258.
Greicius M.D., Supekar K., Menon V., Dougherty R.F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex 2009, 19(1):72-78.
Hampson M., Driesen N.R., Skudlarski P., Gore J.C., Constable R.T. Brain connectivity related to working memory performance. The Journal of Neuroscience 2006, 26(51):13338-13343.
Hampson M., Peterson B.S., Skudlarski P., Gatenby J.C., Gore J.C. Detection of functional connectivity using temporal correlations in MR images. Human Brain Mapping 2002, 15(4):247-262.
Iidaka T., Matsumoto A., Nogawa J., Yamamoto Y., Sadato N. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cerebral Cortex 2006, 16(9):1349-1360.
Johnson B., Zhang K., Gay M., Horovitz S., Hallett M., Sebastianelli W., et al. Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. Neuroimage 2012, 59(1):511-518.
Kelley W.M., Miezin F.M., McDermott K.B., Buckner R.L., Raichle M.E., Cohen N.J., et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron-Cambridge MA- 1998, 20:927-936.
LaBar K.S., Gitelman D.R., Parrish T.B., Mesulam M. Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage 1999, 10(6):695-704.
Lang P.J., Bradley M.M., Cuthbert B.N. International affective picture system (IAPS): Technical manual and affective ratings 1999, The Center for Research in Psychophysiology, University of Florida, Gainesville, FL.
Lepage M., Habib R., Tulving E. Hippocampal PET activations of memory encoding and retrieval: The HIPER model. Hippocampus 1998, 8(4):313-322.
Marquez de la Plata C., Garces J., Shokri Kojori E., Diaz-Arrastia R. Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic diffuse axonal Injury. Archives of Neurology 2011, 68(1):74-84.
Mayer J.S., Roebroeck A., Maurer K., Linden D.E. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping 2010, 31(1):126-139.
Meda S.A., Stevens M.C., Folley B.S., Calhoun V.D., Pearlson G.D. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: An ICA based analysis. PLoS One 2009, 4(11):e7911.
Michels L., Bucher K., Lüchinger R., Klaver P., Martin E., Jeanmonod D., et al. Simultaneous EEG-fMRI during a working memory task: Modulations in low and high frequency bands. PLoS One 2010, 5(4):e10298.
Milner B., Squire L.R., Kandel E.R. Cognitive neuroscience review and the study of memory. Neuron 1998, 20:445-468.
Morris C.D., Bransford J.D., Franks J.J. Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior 1977, 16(5):519-533.
Prince S.E., Daselaar S.M., Cabeza R. Neural correlates of relational memory: Successful encoding and retrieval of semantic and perceptual associations. The Journal of Neuroscience 2005, 25(5):1203-1210.
Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proceedings of the National Academy of Sciences 2001, 98(2):676-682.
Rypma B., Berger J.S., Prabhakaran V., Martin Bly B., Kimberg D.Y., Biswal B.B., et al. Neural correlates of cognitive efficiency. Neuroimage 2006, 33(3):969-979.
Sala-Llonch R., Peña-Gómez C., Arenaza-Urquijo E.M., Vidal-Piñeiro D., Bargalló N., Junqué C., et al. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance. Cortex 2012, 48(9):1187-1196.
Satz P., Cole M.A., Hardy D.J., Rassovsky Y. Brain and cognitive reserve: Mediator (s) and construct validity, a critique. Journal of Clinical and Experimental Neuropsychology 2011, 33(1):121-130.
Scarmeas N., Stern Y. Cognitive reserve and lifestyle. Journal of clinical and experimental neuropsychology 2003, 25(5):625-633.
Solé-Padullés C., Bartrés-Faz D., Junqué C., Vendrell P., Rami L., Clemente I.C., Molinuevo J.L. Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer's disease. Neurobiology of aging 2009, 30(7):1114-1124.
Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society 2002, 8(03):448-460.
Stuss D.T., Levine B. Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology 2002, 53(1):401-433.
Sun X., Zhang X., Chen X., Zhang P., Bao M., Zhang D., et al. Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage 2005, 26(1):36-47.
Tomasi D., Ernst T., Caparelli E.C., Chang L. Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla. Human Brain Mapping 2006, 27(8):694-705.
Tulving E. Organization of memory: Quo vadis. The Cognitive Neurosciences 1995, 839-847.
Uddin L.Q., Clare Kelly A.M., Biswal B.B., Castellanos F.X., Milham M.P. Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping 2009, 30(2):625-637.
Van den Bosch G.E., Marroun H.E., Schmidt M.N., Tibboel D., Manoach D.S., Calhoun V.D., et al. Brain connectivity during verbal working memory in children and adolescents. Human Brain Mapping 2012.
Wang J.X., Bartolotti J., Amaral L.A., Booth J.R. Changes in task-related functional connectivity across multiple spatial scales are related to reading performance. PLoS One 2013, 8(3):e59204.
Whitfield-Gabrieli S., Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2012, 2(3):125-141.
Woodward N.D., Rogers B., Heckers S. Functional resting-state networks are differentially affected in schizophrenia. Schizophrenia Research 2011, 130(1):86-93.