[en] Topological spin structures, such as magnetic skyrmions, hold great promises for data storage applications, thanks to their inherent stability. In most cases, skyrmions are stabilized by magnetic fields in non-centrosymmetric systems displaying the chiral Dzyaloshinskii-Moriya exchange interaction, while spontaneous skyrmion lattices have been reported in centrosymmetric itinerant magnets with long-range interactions. Here, a spontaneous anti-biskyrmion lattice with unique topology and chirality is predicted in the monolayer of a semiconducting and centrosymmetric metal halide, NiI2. Our first-principles and Monte Carlo simulations reveal that the anisotropies of the short-range symmetric exchange, when combined with magnetic frustration, can lead to an emergent chiral interaction that is responsible for the predicted topological spin structures. The proposed mechanism finds a prototypical manifestation in two-dimensional magnets, thus broadening the class of materials that can host spontaneous skyrmionic states.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899 (2013). DOI: 10.1038/nnano.2013.243
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017). DOI: 10.1038/natrevmats.2017.31
Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10, 195 (2015). DOI: 10.1038/nnano.2015.41
RöBler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797 (2006). DOI: 10.1038/nature05056
Yi, S. D., Onoda, S., Nagaosa, N. & Han, J. H. Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet. Phys. Rev. B 80, 054416 (2009). DOI: 10.1103/PhysRevB.80.054416
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011). DOI: 10.1038/nphys2045
Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of Skyrmions in a multiferroic material. Science 336, 198 (2012). DOI: 10.1126/science.1214143
Simon, E., Palotás, Rózsa, L., Udvardi, L. & Szunyogh, L. Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir(111). Phys. Rev. B 90, 094410 (2014). DOI: 10.1103/PhysRevB.90.094410
Lin, S.-Z., Saxena, A. & Batista, C. D. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy. Phys. Rev. B 91, 224407 (2015). DOI: 10.1103/PhysRevB.91.224407
Peng, L. et al. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat. Nanotechnol. (2020). 10.1038/s41565-019-0616-6.
Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012). DOI: 10.1103/PhysRevLett.108.017206
Leonov, A. O. & Mostovoy, M. Multiple periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015). DOI: 10.1038/ncomms9275
Lin, S.-Z. & Hayami, S. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions. Phys. Rev. B 93, 064430 (2016). DOI: 10.1103/PhysRevB.93.064430
Hayami, S., Lin, S.-Z. & Batista, C. D. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy. Phys. Rev. B 93, 184413 (2016). DOI: 10.1103/PhysRevB.93.184413
Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019). DOI: 10.1038/s41467-019-13675-4
Yu, X. Z. et al. Biskyrmion states and their current-driven motion in a layered manganite. Nat. Commun. 5, 3198 (2014). DOI: 10.1038/ncomms4198
Wang, W. et al. A centrosymmetric hexagonal magnet with superstable biskyrmion magnetic nanodomains in a wide temperature range of 100–340 K. Adv. Mater. 28, 6887 (2016). DOI: 10.1002/adma.201600889
Zhang, X. et al. Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition. Nat. Commun. 8, 1717 (2017). DOI: 10.1038/s41467-017-01785-w
Capic, D., Garanin, D. A. & Chudnovsky, E. M. Biskyrmions lattices in centrosymmetric magnetic films. Phys. Rev. B 100, 014432 (2019). DOI: 10.1103/PhysRevB.100.014432
Göbel, B., Henk, J. & Mertig, I. Forming individual magnetic biskyrmions by merging two skyrmions in a centrosymmetric nanodisk. Sci. Rep. 9, 9521 (2019). DOI: 10.1038/s41598-019-45965-8
Batista, C. D., Lin, S.-Z., S, H. & Kamiya, Y. Frustration and chiral orderings in correlated electron systems. Rep. Prog. Phys. 79, 084504 (2016).
Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008). DOI: 10.1103/PhysRevLett.101.156402
Akagi, Y. & Motome, Y. Spin chirality ordering and anomalous hall effect in the ferromagnetic Kondo lattice model on a triangular lattice. J. Phys. Soc. Jpn 79, 083711 (2010). DOI: 10.1143/JPSJ.79.083711
Ozawa, R., Hayami, S. & Motome, Y. Zero-field skyrmions with a high topological number in itinerant magnets. Phys. Rev. Lett. 118, 147205 (2017). DOI: 10.1103/PhysRevLett.118.147205
Hayami, S. & Motome, Y. Effect of magnetic anisotropy on skyrmions with high topological number in itinerant magnets. Phys. Rev. B 99, 094420 (2019). DOI: 10.1103/PhysRevB.99.094420
Adam, A. et al. Neutron diffraction study of the commensurate and incommensurate magnetic structures of niBr2. State Commun. 35, 1 (1980). DOI: 10.1016/0038-1098(80)90757-7
Kuindersma, S. R., Sanchez, J. P. & Haas, C. Magnetic and structural investigations on NiI2 and CoI2. Physica 111B, 231 (1981).
Tokunaga, Y. et al. Multiferroicity in NiBr2 with long-wavelength cycloidal spin structure on a triangular lattice. Phys. Rev. B 84, 060406(R) (2011). DOI: 10.1103/PhysRevB.84.060406
Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013). DOI: 10.1103/PhysRevB.87.014429
McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017). DOI: 10.3390/cryst7050121
Kulish, V. V. & Huang, W. Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C 5, 8734 (2017). DOI: 10.1039/C7TC02664A
Botana, A. S. & Norman, M. R. Electronic structure and magnetism of transition metal dihalides: bulk to monolayer. Phys. Rev. Mater. 3, 044001 (2019). DOI: 10.1103/PhysRevMaterials.3.044001
Babu, S., Prokes, S., Huang, Y. K., Radu, F. & Mishra, S. K. Magnetic-field-induced incommensurate to collinear spin order transition in NiBr2. J. Appl. Phys. 125, 093902 (2019). DOI: 10.1063/1.5066625
Zhang, Y. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 31, 1900056 (2019). DOI: 10.1002/adma.201900056
Wong, P. K. J. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 31, 1901185 (2019). DOI: 10.1002/adma.201901185
Behera, A. K., Chowdhury, S. & Das, S. R. Magnetic skyrmions in atomic thin CrI3 monolayer. Appl. Phys. Lett. 114, 232402 (2019). DOI: 10.1063/1.5096782
Hou, Z. et al. Current-induced helicity reversal of a single skyrmionic bubble chain in a nanostructured frustrated magnet. Adv. Mater. 32, 1904815 (2019). DOI: 10.1002/adma.201904815
Li, H., Ruan, S. & Zeng, Y.-J. Intrinsic Van Der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv. Mater. 31, 1900065 (2019). DOI: 10.1002/adma.201900065
Dupé, B., Kruse, C. N., Dornheim, T. & Heinze, S. How to reveal metastable skyrmionic spin structures by spin-polarized scanning tunneling microscopy. N. J. Phys. 18, 055015 (2016). DOI: 10.1088/1367-2630/18/5/055015
Rózsa, L. et al. Formation and stability of metastable skyrmionic spin structures with various topologies in an ultrathin film. Phys. Rev. B 95, 094423 (2017). DOI: 10.1103/PhysRevB.95.094423
Ozawa, R. et al. Vortex crystals with chiral stripes in itinerant magnets. J. Phys. Soc. Jpn 85, 103703 (2016). DOI: 10.7566/JPSJ.85.103703
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960). DOI: 10.1103/PhysRev.120.91
Simon, E. et al. Spin-correlations and magnetic structure in an Fe monolayer on 5d transition metal surfaces. J. Phys. 26, 186001 (2014).
Vida, Gy. J., Simon, E., Rózsa, L., Palotás, K. & Szunyogh, L. Domain-wall profiles in Co/Ir n /Pt(111) ultrathin films: influence of the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 4, 214422 (2016). DOI: 10.1103/PhysRevB.94.214422
Moriya, T. Theory of magnetism of NiF2. Phys. Rev. 117, 635 (1960). DOI: 10.1103/PhysRev.117.635
Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 115, 2 (1959). DOI: 10.1103/PhysRev.115.2
Xu, C., Feng, J., Xiang, H. & Bellaiche, L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput. Mater. 4, 57 (2018). DOI: 10.1038/s41524-018-0115-6
Xu, C. et al. Topological spin texture in Janus monolayers of the chromium trihalides Cr(I,X)3. Phys. Rev. B 101, 060404(R) (2020). DOI: 10.1103/PhysRevB.101.060404
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270 (2017). DOI: 10.1038/nature22391
Zhang, W.-B., Qu, Q., Zhu, P. & Lam, C.-H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 3, 12457 (2015). DOI: 10.1039/C5TC02840J
Hoffmann, M. et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions. Nat. Commun. 8, 308 (2017). DOI: 10.1038/s41467-017-00313-0
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). DOI: 10.1103/PhysRevB.54.11169
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). DOI: 10.1103/PhysRevB.59.1758
VASP official website: https://www.vasp.at/
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1997). DOI: 10.1103/PhysRevLett.77.3865
Rohrbach, A., Hafner, J. & Kresse, G. Electronic correlation effects in transition-metal sulfides. J. Phys. 15, 979 (2003).
Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467(R) (1995). DOI: 10.1103/PhysRevB.52.R5467
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA.U study. Phys. Rev. B 57, 1505 (1998). DOI: 10.1103/PhysRevB.57.1505
Amoroso, D. First-principles approach to novel 2D magnets. Nuovo Cimento 43 C, 114 (2020).
Berg, B. & Lüscher, M. Definition and statistical distributions of a topological number in the lattice O(3) σ -model. Nucl. Phys. B 190, 412–424 (1981). DOI: 10.1016/0550-3213(81)90568-X
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.