K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). SCIEAS 0036-8075 10.1126/science.1102896
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005). NATUAS 0028-0836 10.1038/nature04233
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005). NATUAS 0028-0836 10.1038/nature04235
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43 (2018). NATUAS 0028-0836 10.1038/nature26160
Z. Sun, Nature (London) 572, 497 (2019). NATUAS 0028-0836 10.1038/s41586-019-1445-3
C. Gong, Nature (London) 546, 265 (2017). NATUAS 0028-0836 10.1038/nature22060
B. Huang, Nature (London) 546, 270 (2017). NATUAS 0028-0836 10.1038/nature22391
C. S. Xu, J. S. Feng, H. J. Xiang, and L. Bellaiche, npj Comput. Mater. 4, 57 (2018). CMMSEM 0927-0256 10.1038/s41524-018-0115-6
I. Lee, F. G. Utermohlen, D. Weber, K. Hwang, C. Zhang, J. van Tol, J. E. Goldberger, N. Trivedi, and P. C. Hammel, Phys. Rev. Lett. 124, 017201 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.124.017201
C. Xu, J. Feng, M. Kawamura, Y. Yamaji, Y. Nahas, S. Prokhorenko, Y. Qi, H. Xiang, and L. Bellaiche, Phys. Rev. Lett. 124, 087205 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.124.087205
Y. Gong, Chin. Phys. Lett. 36, 076801 (2019). CPLEEU 0256-307X 10.1088/0256-307X/36/7/076801
Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 367, 895 (2020). SCIEAS 0036-8075 10.1126/science.aax8156
M. M. Otrokov, Nature (London) 576, 416 (2019). NATUAS 0028-0836 10.1038/s41586-019-1840-9
M. Bonilla, S. Kolekar, Y. Ma, H. Coy Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M.-H. Phan, and M. Batzill, Nat. Nanotechnol. 13, 289 (2018). NNAABX 1748-3387 10.1038/s41565-018-0063-9
Y. Deng, Nature (London) 563, 94 (2018). NATUAS 0028-0836 10.1038/s41586-018-0626-9
S. Son, Phys. Rev. B 99, 041402 (2019). PRBMDO 2469-9950 10.1103/PhysRevB.99.041402
M. McGuire, Crystals 7, 121 (2017). CRYSBC 2073-4352 10.3390/cryst7050121
R. K. Ghosh, A. Jose, and G. Kumari, Phys. Rev. B 103, 054409 (2021). PRBMDO 2469-9950 10.1103/PhysRevB.103.054409
H. Xiang, C. Lee, H. J. Koo, X. Gong, and M. H. Whangbo, Dalton Trans. 42, 823 (2013). DTARAF 1477-9226 10.1039/C2DT31662E
C. Xu, B. Xu, B. Dupé, and L. Bellaiche, Phys. Rev. B 99, 104420 (2019). PRBMDO 2469-9950 10.1103/PhysRevB.99.104420
P. S. Wang, W. Ren, L. Bellaiche, and H. J. Xiang, Phys. Rev. Lett. 114, 147204 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.147204
T. Kurumaji, S. Seki, S. Ishiwata, H. Murakawa, Y. Kaneko, and Y. Tokura, Phys. Rev. B 87, 014429 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.014429
Y. Tokunaga, D. Okuyama, T. Kurumaji, T. Arima, H. Nakao, Y. Murakami, Y. Taguchi, and Y. Tokura, Phys. Rev. B 84, 060406 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.060406
S. Dong, H. Xiang, and E. Dagotto, Natl. Sci. Rev. 6, 629 (2019). NSRACI 2053-714X 10.1093/nsr/nwz023
H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.057205
H. J. Xiang, E. J. Kan, Y. Zhang, M. H. Whangbo, and X. G. Gong, Phys. Rev. Lett. 107, 157202 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.157202
N. A. Spaldin, Nat. Rev. Mater. 2, 17017 (2017). NRMADL 2058-8437 10.1038/natrevmats.2017.17
P. A. Lindgard, R. J. Birgeneau, J. Als-Nielsen, and H. J. Guggenheim, J. Phys. C 8, 1059 (1975). JPSOAW 0022-3719 10.1088/0022-3719/8/7/021
O. B. Zajnullin, A. E. Voloshin, V. A. Komornikov, V. L. Manomenova, E. B. Rudneva, I. S. Timakov, and S. I. Kovalev, Phys. Solid State 61, 2415 (2019). PSOSED 1063-7834 10.1134/S106378341912059X
Y. Rosenfeld Hacohen, R. Popovitz-Biro, E. Grunbaum, Y. Prior, and R. Tenne, Adv. Mater. 14, 1075 (2002). ADVMEW 0935-9648 10.1002/1521-4095(20020805)14:15<1075::AID-ADMA1075>3.0.CO;2-H
Y. Rosenfeld Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, and R. Tenne, Phys. Chem. Chem. Phys. 5, 1644 (2003). PPCPFQ 1463-9076 10.1039/b211737a
Z. Luo, X. Lin, L. Tang, Y. Feng, Y. Gui, J. Zhu, W. Yang, D. Li, L. Zhou, and L. Fu, ACS Appl. Mater. Interfaces 12, 34755 (2020). AAMICK 1944-8244 10.1021/acsami.0c05751
Z. Jiang, Y. Li, W. Duan, and S. Zhang, Phys. Rev. Lett. 122, 236402 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.122.236402
M. E. Lines, Phys. Rev. 131, 546 (1963). PHRVAO 0031-899X 10.1103/PhysRev.131.546
X. Y. Li, F. Lou, X. G. Gong, and H. J. Xiang, New J. Phys. 22, 053036 (2020). NJOPFM 1367-2630 10.1088/1367-2630/ab85df
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.127.247204 for computational details, additional results on bulk (Equation presented), additional results on monolayer (Equation presented), origin of giant biquadratic exchange interactions in monolayer (Equation presented), biquadratic exchange interactions in monolayers (Equation presented), (Equation presented), (Equation presented), and (Equation presented), and additional results on fictitious perovskite (Equation presented), which includes Refs. [17,19,35,37-52].
P. E. Blochl, Phys. Rev. B 50, 17953 (1994). PRBMDO 0163-1829 10.1103/PhysRevB.50.17953
G. Kresse and J. Furthmüller, Phys. Rev. B 50, 17953 (1996). PRBMDO 0163-1829 10.1103/PhysRevB.50.17953
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865
A. I. Liechtenstein, V. V. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995). PRBMDO 0163-1829 10.1103/PhysRevB.52.R5467
P. S. Wang and H. J. Xiang, Phys. Rev. X 4, 011035 (2014). PRXHAE 2160-3308 10.1103/PhysRevX.4.011035
A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008). CPHCBZ 0010-4655 10.1016/j.cpc.2007.11.016
G. Pizzi, J. Phys. Condens. Matter 32, 165902 (2020). JCOMEL 0953-8984 10.1088/1361-648X/ab51ff
X. He, N. Helbig, M. J. Verstraete, and E. Bousquet, Comput. Phys. Commun. 264, 107938 (2021). CPHCBZ 0010-4655 10.1016/j.cpc.2021.107938
O. Besbes, S. Nikolaev, N. Meskini, and I. Solovyev, Phys. Rev. B 99, 104432 (2019). PRBMDO 2469-9950 10.1103/PhysRevB.99.104432
I. V. Solovyev, Phys. Rev. B 103, 104428 (2021). PRBMDO 2469-9950 10.1103/PhysRevB.103.104428
H. J. Xiang, E. J. Kan, S.-H. Wei, M. H. Whangbo, and X. G. Gong, Phys. Rev. B 84, 224429 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.224429
M. J. Freiser, Phys. Rev. 123, 2003 (1961). PHRVAO 0031-899X 10.1103/PhysRev.123.2003
K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). JUPSAU 0031-9015 10.1143/JPSJ.65.1604
A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987). JMMMDC 0304-8853 10.1016/0304-8853(87)90721-9
F. Mila and F. C. Zhang, Eur. Phys. J. B 16, 7 (2000). EPJBFY 1434-6028 10.1007/s100510070242
J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954). PHRVAO 0031-899X 10.1103/PhysRev.94.1498
D. Amoroso, P. Barone, and S. Picozzi, Nat. Commun. 11, 5784 (2020). NCAOBW 2041-1723 10.1038/s41467-020-19535-w
(Equation presented) calculations using the structure optimized with the FM order, static (Equation presented) calculations using the structure optimized with FM order, and full (Equation presented) calculations in which the structures are optimized with the corresponding magnetic orders.
L. M. Sandratskii, Adv. Phys. 47, 91 (1998). ADPHAH 0001-8732 10.1080/000187398243573
G. Keresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). PRBMDO 0163-1829 10.1103/PhysRevB.54.11169
The gBT method allows the efficient simulation of incommensurate spiral magnetic orders using primitive unit cells, avoiding the high computational cost of huge supercells.
Y. Tanaka and N. Uryu, Prog. Theor. Phys. 55, 1356 (1976). PTPKAV 0033-068X 10.1143/PTP.55.1356
F. M. K. Murao and T. Kudo, J. Phys. Soc. Jpn. 65, 1399 (1996). JUPSAU 0031-9015 10.1143/JPSJ.65.1399
Our further analysis on monolayer (Equation presented) shows that a FM ground state can be obtained if (Equation presented) is smaller than 0.23. However, the (Equation presented) ratio of monolayer (Equation presented), estimated with various (Equation presented) in the range ((Equation presented)) remains close to (Equation presented), being always larger than 0.23.
F. Lou, X. Y. Li, J. Y. Ji, H. Y. Yu, J. S. Feng, X. G. Gong, and H. J. Xiang, J. Chem. Phys. 154, 114103 (2021). JCPSA6 0021-9606 10.1063/5.0043703
As such, our MLMCH process for monolayer (Equation presented) can determine the significant spin interactions among all possible spin-spin interactions up to the fourth order and four bodies within a given cutoff distance (11 Å in this work).
A. Kartsev, M. Augustin, R. F. L. Evans, K. S. Novoselov, and E. J. G. Santos, npj Comput. Mater. 6, 150 (2020). 2057-3960 10.1038/s41524-020-00416-1
M. Hoffmann and S. Blügel, Phys. Rev. B 101, 024418 (2020). PRBMDO 2469-9950 10.1103/PhysRevB.101.024418
D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, Phys. Rev. Lett. 11, 10 (1963). PRLTAO 0031-9007 10.1103/PhysRevLett.11.10