This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms
All documents in ORBi are protected by a user license.
Zweifel, R.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Etzold, S.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Basler, D.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland, Department of Environmental Sciences–Botany, University of Basel, Basel, Switzerland
Braun, S.; Institute for Applied Plant Biology AG, Witterswil, Switzerland
Buchmann, N.; Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
Conedera, M.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Fonti, P.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Gessler, A.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
Haeni, M.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Hoch, G.; Department of Environmental Sciences–Botany, University of Basel, Basel, Switzerland
Kahmen, A.; Department of Environmental Sciences–Botany, University of Basel, Basel, Switzerland
Köchli, R.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Maeder, M.; Institute for Computer Music and Sound Technology (ICST), Zurich University of the Arts (ZHdK), Zurich, Switzerland, Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland
Nievergelt, D.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Peter, M.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Peters, Richard ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Schaub, M.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Trotsiuk, V.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Walthert, L.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Wilhelm, M.; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
Eugster, W.; Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
Aryal S. Hausser M. Griessinger J. Fan Z. X. Brauning A. (2020). “dendRoAnalyst”: a tool for processing and analysing dendrometer data. Dendrochronologia 64:125772. 10.1016/j.dendro.2020.125772
Bastos A. Ciais P. Friedlingstein P. Sitch S. Pongratz J. Fan L. et al. (2020). Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6:eaba2724. 10.1126/sciadv.aba2724 32577519
Bose A. K. Moser B. Rigling A. Lehmann M. M. Milcu A. Peter M. et al. (2020). Memory of environmental conditions across generations affects the acclimation potential of scots pine. Plant Cell Environ. 43 1288–1299. 10.1111/pce.13729 31990067
Buras A. Rammig A. Zang C. S. (2020). Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17 1655–1672.
Charrier G. Nolf M. Leitinger G. Charra-Vaskou K. Losso A. Tappeiner U. et al. (2017). Monitoring of freezing dynamics in trees: a simple phase shift causes complexity. Plant Physiol. 173 2196–2207. 10.1104/pp.16.01815 28242655
Cuny H. E. Rathgeber C. B. K. Frank D. Fonti P. Makinen H. Prislan P. et al. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1 1–6.
Deslauriers A. Rossi S. Anfodillo T. (2007). Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25 113–124. 10.1016/j.dendro.2007.05.003
Deslauriers A. Rossi S. Turcotte A. Morin H. Krause C. (2011). A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia 29 151–161. 10.1016/j.dendro.2011.01.008
Dietrich L. Kahmen A. (2019). Water relations of drought-stressed temperate trees benefit from short drought-intermitting rainfall events. Agric. For. Meteorol. 265 70–77. 10.1016/j.agrformet.2018.11.012
Dixon H. H. Joly J. (1894). On the ascent of sap. Philos. Trans. R. Soc. Lond. B Biol. Sci. 186 563–576.
Drew D. M. Downes G. M. (2009). The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27 159–172.
Dukat P. Ziemblinska K. Olejnik J. Malek S. Vesala T. Urbaniak M. (2021). Estimation of biomass increase and CUE at a young temperate scots pine stand concerning drought occurrence by combining eddy covariance and biometric methods. Forests 12:867. 10.3390/f12070867
Eitel J. U. H. Griffin K. L. Boelman N. T. Maguire A. J. Meddens A. J. H. Jensen J. et al. (2020). Remote sensing tracks daily radial wood growth of evergreen needleleaf trees. Glob. Change Biol. 26 4068–4078. 10.1111/gcb.15112 32279395
Etzold S. Ferretti M. Reinds G. J. Solberg S. Gessler A. Waldner P. et al. (2020). Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. For. Ecol. Manag. 458:117762. 10.1016/j.foreco.2019.117762
Etzold S. Zieminska K. Rohner B. Bottero A. Bose A. K. Ruehr N. K. et al. (2019). One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front. Plant Sci. 10:307.
Eugster W. Baumgartner L. P. Bachmann O. Baltensperger U. Dèzes P. Dubois N. et al. (2021). “Geosciences Roadmap for Research Infrastructures 2025–2028 by the Swiss Geosciences Community”. Swiss Academies Reports. Bern: RoTaGeo team.
Fang O. Y. Zhang Q. B. Vitasse Y. Zweifel R. Cherubini P. (2021). The frequency and severity of past droughts shape the drought sensitivity of juniper trees on the Tibetan plateau. For. Ecol. Manag. 486:118968. 10.1016/j.foreco.2021.118968
Franz D. Acosta M. Altimir N. Arriga N. Arrouays D. Aubinet M. et al. (2018). Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review. Int. Agrophys. 32 439–455.
García Criado M. Myers-Smith I. Baeten L. Cunliffe A. Daskalova G. Gallois E. et al. (2020). Sharing is caring: working with other people’s data. Methods Ecol. Evol. Methods Blog Available online at: https://methodsblog.com/2020/09/04/sharing-is-caring-working-with-other-peoples-data/ (accessed September 24, 2020),
Geng X. Fu Y. H. Hao F. Zhou X. Zhang X. Yin G. et al. (2020). Climate warming increases spring phenological differences among temperate trees. Glob. Change Biol. 26 5979–5987. 10.1111/gcb.15301 32757456
Goli G. Becherini F. Di Tuccio M. C. Bernardi A. Fioravanti M. (2019). Thermal expansion of wood at different equilibrium moisture contents. J. Wood Sci. 65 1–7.
Gricar J. Cufar K. (2008). Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ. J. Plant Physiol. 55 538–543. 10.1134/s102144370804016x
Gricar J. Jagodic S. Prislan P. (2015). Structure and subsequent seasonal changes in the bark of sessile oak (Quercus petraea). Trees Struct. Funct. 29 747–757. 10.1007/s00468-015-1153-z
Gricar J. Levanic T. Oven P. (2008). Parameters of Gompertz function for evaluation of wood formation dynamics expressed as number of cells or measured widths in Norway spruce. Wood Res. 53 35–44.
Güney A. Zweifel R. Turkan S. Zimmermann R. Wachendorf M. Guney C. O. (2020). Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Ann. For. Sci. 77 1–16.
Haeni M. Knüsel S. Wilhelm M. Peters R. L. Zweifel R. (2020). “Treenetproc - Clean, Process and Visualise Dendrometer Data. R Package Version 0.1.4.”. Github Repository. Available online at: https://github.com/treenet/treenetproc (accessed June 9, 2021).
Hari V. Rakovec O. Markonis Y. Hanel M. Kumar R. (2020). Increased future occurrences of the exceptional 2018-2019 Central European drought under global warming. Sci. Rep. 10:12207.
Heiskanen J. Brümmer C. Buchmann N. Calfapietra C. Chen H. Gielen B. et al. (2021). Integrated carbon observation system in Europe. Bull. Am. Meteorol. Soc. (in press)
Heylen R. (1992). “A meteorological information processing system (MIPS),” in International Weather Radar Networking, ed. Collier C. G. (Dordrecht: Springer).
Hilty J. Muller B. Florent P. Leuzinger S. (2021). Plant growth: the what, the how, and the why. New Phytol. 232 25–41.
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Kannenberg S. A. Novick K. A. Alexander M. R. Maxwell J. T. Moore D. J. P. Phillips R. P. et al. (2019). Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. Glob. Change Biol. 25 2978–2992. 10.1111/gcb.14710 31132225
Kitaura K. (1967). “Supercooling and ice formation in mulberry,” in Cryobiology, ed. Asahina E. (Sapporo: Hokkaido Univ), 143–156.
Knüsel S. Haeni M. Wilhelm M. Peters R. L. Zweifel R. (2021). Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12:765. 10.3390/f12060765
Lamacque L. Charrier G. Farnese F. D. Lemaire B. Ameglio T. Herbette S. (2020). Drought-induced mortality: branch diameter variation reveals a point of no recovery in Lavender species. Plant Physiol. 183 1638–1649. 10.1104/pp.20.00165 32404411
Lockhart J. A. (1965). An analysis of irreversible plant cell elongation. J. Theor. Biol. 8 264–275. 10.1016/0022-5193(65)90077-9
Majdak A. Jakus R. Blazenec M. (2021). Determination of differences in temperature regimes on healthy and bark-beetle colonised spruce trees using a handheld thermal camera. Iforest Biogeosci. For. 14 203–211. 10.3832/ifor3531-014 17959540
Mayr S. Schmid P. Beikircher B. (2012). “Plant water relations in alpine winter,” in Plants in Alpine Regions, ed. Lütz C. (Vienna: Springer). 10.1007/978-3-030-59538-8_9
Mencuccini M. Salmon Y. Mitchell P. Holtta T. Choat B. Meir P. et al. (2017). An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies. Plant Cell Environ. 40 290–303. 10.1111/pce.12863 27861997
Meng S. W. Fu X. L. Zhao B. Dai X. Q. Li Q. K. Yang F. T. et al. (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees Struct. Funct. 1–14. 10.1007/s00468-021-02152-5
Monteith J. L. (1965). Evaporation and environment. Symp. Soc. Exp. Biol. 19 205–234.
Monteith J. L. Unsworth M. H. (1990). Principles of Environmental Physics. Oxford: Edward Arnold.
National Academies of Sciences Engineering and Medicine (2016). Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: The National Academies Press.
Nehemy M. F. Benettin P. Asadollahi M. Pratt D. Rinaldo A. Mcdonnell J. J. (2021). Tree water deficit and dynamic source water partitioning. Hydrol. Process. 35 e14004. 10.1002/hyp.14004
Oberhuber W. Sehrt M. Kitz F. (2020). Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agric. For. Meteorol. 290 1–7. 10.1016/j.agrformet.2020.108026 32565589
Ogle K. Barber J. J. Barron-Gafford G. A. Bentley L. P. Young J. M. Huxman T. E. et al. (2015). Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18 221–235. 10.1111/ele.12399 25522778
Pappas C. Peters R. L. Fonti P. (2020). Linking variability of tree water use and growth with species resilience to environmental changes. Ecography 43 1386–1399. 10.1111/ecog.04968
Penman H. L. (1948). Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. 193 120–146. 10.1098/rspa.1948.0037 18865817
Peters R. L. Fonti P. Frank D. C. Poyatos R. Pappas C. Kahmen A. et al. (2018). Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytol. 219 1283–1299. 10.1111/nph.15241 29862531
Peters R. L. Steppe K. Cuny H. E. De Pauw D. J. W. Frank D. C. Schaub M. et al. (2021b). Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 229 213–229. 10.1111/nph.16872 32790914
Peters R. L. Pappas C. Hurley A. G. Poyatos R. Flog V. Zweifel R. et al. (2021a). Assimilate, process, and analyse thermal dissipation sap flow data using the TREX R package. Methods Ecol. Evol. 12 342–350. 10.1111/2041-210X.13524
Pierrat Z. Nehemy M. F. Roy A. Magney T. Parazoo N. C. Laroque C. et al. (2021). Tower-based remote sensing reveals mechanisms behind a two-phased spring transition in a mixed-species boreal forest. J. Geophys. Res. Biogeosci. 126:e2020JG006191. 10.1029/2020JG006191
Poyatos R. Et A. Zweifel R. MartiíNez-Vilalta J. (2021). Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13 2607–2649. 10.5194/essd-2020-227
R Core Team (2019). R: A Language and Environment for Statistical Computing (Version 3.6.2). Vienna: R Foundation for Statistical Computing.
Rathgeber C. B. K. Cuny H. E. Fonti P. (2016). Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7:734. 10.3389/fpls.2016.00734 27303426
Reznick L. (1993). Using cron and crontab. Sys. Admin 2 29–32.
Richardson A. D. Hufkens K. Milliman T. Aubrecht D. M. Chen M. Gray J. M. et al. (2018). Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data 5:180028. 10.1038/sdata.2018.28 29533393
Rigling A. Bigler C. Eilmann B. Feldmeyer-Christe E. Gimmi U. Ginzler C. et al. (2013). Driving factors of a vegetation shift from Scots pine to pubescent oak in dry alpine forests. Glob. Change Biol. 19 229–240. 10.1111/gcb.12038 23504734
Sabbatini S. Mammarella I. Arriga N. Fratini G. Graf A. Hortriagl L. et al. (2018). Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int. Agrophys. 32 495–515. 10.1515/intag-2017-0043
Schafer C. Rotzer T. Thurm E. A. Biber P. Kallenbach C. Pretzsch H. (2019). Growth and tree water deficit of mixed Norway spruce and European beech at different heights in a tree and under heavy drought. Forests 10 1–20. 10.3390/f10070577
Schimel D. Keller M. (2015). Big questions, big science: meeting the challenges of global ecology. Oecologia 177 925–934. 10.1007/s00442-015-3236-3 25680334
Schönbeck L. Gessler A. Hoch G. Mcdowell N. G. Rigling A. Schaub M. et al. (2018). Homeostatic levels of nonstructural carbohydrates after 13 yr of drought and irrigation in Pinus sylvestris. New Phytol. 219 1314–1324. 10.1111/nph.15224 29770969
Schulze E.-D. Beck E. Buchmann N. Clemens S. Müller-Hohenstein K. Scherer-Lorenzen M. (2019). Plant Ecology. Berlin: Springer-Verlag. 10.1007/978-3-662-56233-8
Sellier D. Segura R. (2020). Radial growth anisotropy and temporality in fast-growing temperate conifers. Ann. For. Sci. 77 1–12. 10.1007/s13595-020-00991-9
Sevanto S. Holbrook N. M. Ball M. C. (2012). Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation. Front. Plant Sci. 3:107. 10.3389/fpls.2012.00107 22685446
Single W. V. (1964). Studies on frost injury to wheat. II. Ice formation within the plant. Austr. J. Agric. Res. 15 869–875. 10.1071/AR9640869
Steppe K. Sterck F. Deslauriers A. (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20 335–343.
Trotsiuk V. Hartig F. Cailleret M. Babst F. Forrester D. I. Baltensweiler A. et al. (2020). Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion. Glob. Change Biol. 26 2463–2476. 10.1111/gcb.15011 31968145
Walthert L. Ganthaler A. Mayr S. Saurer M. Waldner P. Walser M. et al. (2021). From the comfort zone to crown dieback: sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 753:14. 10.1016/j.scitotenv.2020.141792 33207466
Woodruff D. R. Meinzer F. C. (2011). “Size-dependent changes in biophysical control of tree growth: the role of turgor,” in Size- and Age-Related Changes in Tree Structure and Function, eds Meinzer F. C. Lachenbruch B. Dawson T. E. (Dordrecht: Springer), 363–384. 10.1007/978-94-007-1242-3_14
Yenni G. M. Christensen E. M. Bledsoe E. K. Supp S. R. Diaz R. M. White E. P. et al. (2019). Developing a modern data workflow for regularly updated data. PLoS Biol. 17:e3000125. 10.1371/journal.pbio.3000125 30695030
Zweifel R. Etzold S. Sterck F. Gessler A. Anfodillo T. Mencuccini M. et al. (2020). Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment. New Phytol. 227 1081–1096. 10.1111/nph.16582 32259280
Zweifel R. Haeni M. Buchmann N. Eugster W. (2016). Are trees able to grow in periods of stem shrinkage? New Phytol. 211 839–849. 10.1111/nph.13995 27189708
Zweifel R. Häsler R. (2000). Frost-induced reversible shrinkage of bark of mature, subalpine conifers. Agric. For. Meteorol. 102 213–222. 10.1016/S0168-1923(00)00135-0
Zweifel R. Sterck F. (2018). A conceptual tree model explaining legacy effects on stem growth. Front. Plant Sci. 1:9. 10.3389/ffgc.2018.00009
Zweifel R. Sterck F. Braun S. Buchmann N. Eugster W. Gessler A. et al. (2021). Why trees grow at night. New Phytol. 231 2174–2185.
Zweifel R. Zeugin F. Zimmermann L. Newbery D. M. (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot. 57 1445–1459. 10.1093/jxb/erj125 16556628