[en] The present paper provides an overview of Synthetic Aperture Radar (SAR) remote sensing concepts. SAR remote sensing is a coherent active imaging technique, where the spaceborne sensor emits an electromagnetic wave and captures its backscattered signal. Each pixel contains amplitude information, witness of the ground properties to reflect the signal back to the sensor, and a phase component, which is related to the distance from the sensor to the ground target. Firstly, we will focus on SAR and SAR interferometry concepts. The acquisition geometry, the different wavelengths, the issue of spatial resolution, the polarization; SAR has a number of differences compared to optical remote sensing. In addition, the coherent imaging technique allows the exploitation of the phase information, with applications such as DEM generation or surface displacements retrieval. In a second part, we will discuss the current and future SAR constellations as well as recent advances in applications coming from the deep learning field. The domain of SAR remote sensing is a rapidly evolving field, where more and more satellites are being set up and where the private sector is investing massively. Service-oriented market using small X-Band SAR satellites is getting more and more present. In parallel, public institutions already have several important SAR satellites and are currently preparing the next generation, with improved technical specifications.
Research Center/Unit :
CSL - Centre Spatial de Liège - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Glaude, Quentin ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Orban, Anne ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Language :
English
Title :
THE DARK SIDE OF REMOTE SENSING: CURRENT SAR REMOTE SENSING MISSIONS AND APPLICATIONS
Publication date :
2022
Journal title :
Bulletin de la Société Géographique de Liège
ISSN :
0770-7576
eISSN :
2507-0711
Publisher :
Société Geographique de Liege, Belgium
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Ce papier présente un aperçu des concepts liés au radar à synthèse d’ouverture (SAR en anglais). La télédétection SAR est une technique d’imagerie cohérente où le senseur émet un rayonnement électromagnétique, et enregistre le signal rétrodiffusé. Chaque pixel de l’image contient une information sur la capacité de la cible au sol à rétrodiffuser le signal, et une information sur la distance satellite – cible au sol. Dans un premier temps, nous passerons en revue les concepts du SAR et de l’interférométrie SAR. Nous verrons qu’il existe un grand nombre de différences par rapport à la télédétection optique : la géométrie d’acquisition, les longueurs d’ondes employées, les soucis de la résolution spatiale, la polarisation, etc. De plus, nous nous intéresserons aux applications employant l’information de phase, comme l’extraction de modèles numériques de terrain (MNT) ou de cartes de déplacements. Dans un second temps, nous discuterons des missions SAR actuelles et futures, ainsi qu’un nombre d’applications provenant du monde de l’apprentissage en profondeur. Le domaine du SAR évolue rapidement, et de plus en plus de satellites sont en développement. Le secteur privé investit massivement, s’attaquant à un marché orienté services. En parallèle, les grandes institutions publiques disposent déjà de satellites SAR importants, et précisent les spécifications techniques des nouvelles générations.
Alonso-Gonzalez, A., Hajnsek, I., Grigorov, C., Roth, A., Marschalk, U., Gimeno Martinez, N., Cifuentes Revenga, P., Gonzalez Bonilla, M. J., Casal Vazquez, N., Cuerda, J. M. & Gracia Rodriguez, M. (2021). Joint PAZ and TanDEM-X Missions Interferometric Performance. In Davidson, M.W.J. & Furnell, R. (eds), IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, 792-795.
Baumhoer, C. A., Dietz, A. J., Kneisel, C. & Kuenzer, C. (2019). Automated extraction of antarctic glacier and ice shelf fronts from Sentinel-1 imagery using deep learning. Remote Sensing, 11 (21), 1-22. https://doi.org/10.3390/rs11212529
Brockmann Consult (2020). Skywatch, Sensar and C-S. SNAP - ESA Sentinel Application Platform v8.0.3 (Computer Software). http://step.esa.int/. Retrieved 14 October 2021.
Chang, Y. L., Anagaw, A., Chang, L., Wang, Y. C., Hsiao, C. Y. & Lee, W. H. (2019). Ship detection based on YOLOv2 for SAR imagery. Remote Sensing, 11 (7). https://doi.org/10.3390/rs11070786
Chen, W. Y., Wang, Y. C. F., Liu, Y. C., Kira, Z. & Huang, J. B. (2019). A closer look at few-shot classification. 7th International Conference on Learning Representations (ICLR 2019, 2018), 1-17.
Dalsasso, E., Yang, X., Denis, L., Tupin, F. & Yang, W. (2020). SAR image despeckling by deep neural networks: From a pre-trained model to an end-to-end training strategy. Remote Sensing, 12 (16), 1-19. https://doi.org/10.3390/RS12162636
Davidson, M. & Furnell, R. (2021). ROSE-L: Copernicus l-band SAR mission. In Davidson, M.W.J. & Furnell, R. (eds), IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, 872-873.
Eckardt, R., Richter, N., Auer, S., Eineder, M., Roth, A., Hajnsek, I., Walter, D., Braun, M., Motagh, M., Pathe, C., Pleskachevsky, A., Thiel, C. & Schmullius, C. (2013). SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing. In 2012 IEEE International Geoscience and Remote Sensing Symposium, 5315-5317. https:// doi.org/10.1109/IGARSS.2012.6352408
Elachi, C. & IEEE Geoscience and Remote Sensing Society (1987). Spaceborne radar remote sensing: Applications and techniques. New York: IEEE Press, 11-50.
Elachi, C. & van Zyl, J. (2006). Nature and Properties of Electromagnetic Waves. In Kong, J.A., Elachi, C. & van Zyl, J. (eds), Introduction to the Physics and Techniques of Remote Sensing, 23-50. https:// doi.org/10.1002/0471783390.ch2.
Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F. & Massonnet, D. (2007). InSAR Principles:Guidelines for SAR Interferometry Processing and Interpretation (ESA TM-19). ESA Publications, A9- B71.
Flores, A., Herndon, K., Thapa, R. & Cherrington, E. (2019). The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. https://doi.org/10.25966/nr2c-s697. Retrieved 14 October 2021.
Formaro, R., Longo, F., Varacalli, G., Fasano, L. & Pulcino, V. (2021). ASI roadmap in technology and programmes for earth advanced monitoring and assessment of hazards. In Davidson, M.W.J. & Furnell, R. (eds), IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, 1875-1878.
Gaddes, M. E., Hooper, A. & Bagnardi, M. (2019). Using Machine Learning to Automatically Detect Volcanic Unrest in a Time Series of Interferograms. Journal of Geophysical Research: Solid Earth, 124 (11), 12304-12322. https://doi. org/10.1029/2019JB017519
Gao, F., Dong, J., Li, B. & Xu, Q. (2016). Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet. IEEE Geoscience and Remote Sensing Letters, 13 (12), 1792-1796. https:// doi.org/10.1109/LGRS.2016.2611001
Gong, M., Zhao, J., Liu, J., Miao, Q. & Jiao, L. (2016). Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 27 (1), 125-138, doi: 10.1109/ TNNLS.2015.2435783.
Graduate School of Stanford Business (2017). Andrew Ng: Why AI Is the New Electricity (Press Release, March 11, 2017). http://stanford.io/2mwODQU. Retrieved 14 October 2021.
Hajduch, G., Vincent, P., Meadows, P., Small, D., Pilgrim, A., Schubert, A., Piantanida, R., Recchia, A., Franceschi, N., Mouche, A., Grouazel, A. & Husson, R. (2020). Sentinel-1-Annual- Performance-Report-2019. Sentinel-1 Mission Performance Centre, Report DI-MPC-APR / MPC-0460, version 1.1. https://doi.org/10.13140/ RG.2.2.28472.16646
Ho, D., Minh, T. & Ngo, Y. (2021). ComSAR: a new algorithm for processing Big Data SAR Interferometry. In Davidson, M.W.J. & Furnell, R. (eds), 2021 IGARSS 2021 - IEEE International Geoscience and Remote Sensing Symposium, Brussels, 820-823.
Ignatenko, V., Laurila, P., Radius, A., Lamentowski, L., Antropov, O. & Muff, D. (2020). ICEYE Microsatellite SAR Constellation Status Update: Evaluation of First Commercial Imaging Modes. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, (HI), 3581-3584. https://doi.org/10.1109/ IGARSS39084.2020.9324531
Kellogg, K., Rosen, P., Barela, P., Hoffman, P., Edelstein, W., Standley, S., Dunn, C., Guerrero, A. M., Harinath, N., Shaffer, S., Baker, C. & Xaypraseuth, P. (2020). NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. In 2020 IEEE Aerospace Conference, Big Sky (MT), 1-21. https:// doi.org/10.1109/AERO47225.2020.9172638
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M. & Zink, M. (2007). TanDEM-X: A Satellite Formation for High- Resolution SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 45 (11), 3317-3341.
Lancheros, E., Camps, A., Park, H., Sicard, P., Mangin, A., Matevosyan, H. & Lluch, I. (2018). Gaps analysis and requirements specification for the evolution of copernicus system for polar regions monitoring: Addressing the challenges in the horizon 2020-2030. Remote Sensing, 10 (7), 1-17. https://doi.org/10.3390/rs10071098
Leinss, S., Li, S., Bernhard, P., & Frey, O. (2020). Temporal Multi-Looking of SAR Image Series for Glacier Velocity Determination and Speckle Reduction, EGU General Assembly 2020, Online, 4-8 May 2020, EGU2020-3643. https://doi. org/10.5194/egusphere-egu2020-3643
Li, R., Liu, W., Yang, L., Sun, S., Hu, W., Zhang, F. & Li, W. (2018). DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (11), 3954-3962. https://doi.org/10.1109/ JSTARS.2018.2833382
Liu, B., Li, X. & Zheng, G. (2019). Coastal Inundation Mapping from Bitemporal and Dual-Polarization SAR Imagery Based on Deep Convolutional Neural Networks. Journal of Geophysical Research: Oceans, 124 (12), 9101-9113. https:// doi.org/10.1029/2019JC015577
Mancini, F., Grassi, F. & Cenni, N. (2021). A Workflow Based on SNAP-StaMPS Open-Source Tools and GNSS Data for PSI-Based Ground Deformation Using Dual-Orbit Sentinel-1 Data: Accuracy Assessment with Error Propagation Analysis. Remote Sensing, 13 (4), 753. MDPI AG. http:// dx.doi.org/10.3390/rs13040753
Massonnet, D., Rossi, M., Carmona-Moreno, C., Adragna, F., Peltzer, G., Feigl, K. & Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by Radar interferometry. Nature, 364, 138-142. 10.1038/364138a0.
National Research Council (2007). Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Washington D.C.: The National Academies Press, 454 p. https://doi. org/10.17226/11820
Nuncio Quiroz, A. E. & Bartusch, M. (2019). Next Generation of the German X-Band SAR: The Multi- static High-Resolution Wide-Swath Mission. ESA Living Planet Symposium (LPS), Milan.
Obata, T., Arai, M., Asada, S., Imaizumi, T., Saito, H. & Shirasaka, S. (2020). The Latest Status of Our Commercial Small Synthetic Aperture Radar Satellite Constellation. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa (HI), 3578-3580. https://doi. org/10.1109/IGARSS39084.2020.9323284
Parker, M. (2010). Digital Signal Processing, Newnes, 101, 191-200, ISBN 9781856179218, https://doi. org/10.1016/B978-1-85617-921-8.00020-1
Pepe, A. & Calò, F. (2017). A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth's Surface Displacements. Applied Sciences, 7 (12), 1264. MDPI AG. http://dx.doi.org/10.3390/app7121264. Retrieved 14 October 2021.
Portuguese Space Agency (2020). Portugal Space sets major programmatic challenges (Press Release September 23, 2020). https://ptspace.pt/portugal-space-sets-major-programmatic-challenges/ Retrieved 14 October 2021.
Pottier, E., Ferro-Famil, L., Allain, S., Cloude, S., Hajnsek, I., Papathanassiou, K., Moreira, A., Williams, M., Minchella, A., Lavalle, M. & Desnos, Y.L. (2009). Overview of the PolSARpro V4.0 software. the open source toolbox for polarimetric and interferometric polarimetric SAR data processing. In 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, IV-936-IV-939. https://doi.org/10.1109/ IGARSS.2009.5417532
Shibata, M., Kuriyama, T., Hoshino, T., Nakamura, S., Kankaku, Y., Motohka, T. & Suzuki, S. (2021). System Performance and Flight Model Evaluation of Palsar-3 Onboard Alos-4. In Davidson, M.W.J. & Furnell, R. (eds), IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, 3-6.
Stringham, C., Farquharson, G., Castelletti, D., Quist, E., Riggi, L., Eddy, D. & Soenen, S. (2019). The Capella X-band SAR Constellation for Rapid Imaging. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, 9248-9251. https://doi.org/10.1109/ IGARSS.2019.8900410
Torres, R., Davidson, M., Geudtner, D. & Furnell, R. (2021). Copernicus Sar Missions (C and L-Band). In Davidson, M.W.J. & Furnell, R. (eds), IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, 868-871.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B. Ö., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietropaolo, A. & Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9-24. https://doi.org/10.1016/j. rse.2011.05.028
Wang, R., Zhang, J., Chen, J., Jiao, L. & Wang, M. (2019). Imbalanced Learning-Based Automatic SAR Images Change Detection by Morphologically Supervised PCA-Net. IEEE Geoscience and Remote Sensing Letters, 16(4), 554-558. https:// doi.org/10.1109/LGRS.2018.2878420
Zhou, Z.S., Parker, A., Brindle, L., Rosenqvist, A., Caccetta, P. & Held, A. (2020). Initial NovaSAR-1 Data Processing and Imagery Evaluation. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa (HI), 6154-6157. https://doi.org/10.1109/ IGARSS39084.2020.9323291
Zhu, X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F, & Fraundorfer, F. (2017). Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and Remote Sensing Magazine, 5 (4), 8-36.
Zink, M., Fiedler, H., Hajnsek, I., Krieger, G., Moreira, A. & Werner, M. (2006). The TanDEM-X Mission Concept. In 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver (CO), 1938-1941. https://doi.org/10.1109/ IGARSS.2006.501