[en] Terrestrial laser scanning (TLS) was introduced for basic forest measurements, such as tree height and diameter, in the early 2000s. Recent advances in sensor and algorithm development have allowed us to assess in situ 3D forest structure explicitly and revolutionised the way we monitor and quantify ecosystem structure and function. Here, we provide an interdisciplinary focus to explore current developments in TLS to measure and monitor forest structure. We argue that TLS data will play a critical role in understanding fundamental ecological questions about tree size and shape, allometric scaling, metabolic function and plasticity of form. Furthermore, these new developments enable new applications such as radiative transfer modelling with realistic virtual forests, monitoring of urban forests and larger scale ecosystem monitoring through long-range scanning. Finally, we discuss upscaling of TLS data through data fusion with unmanned aerial vehicles, airborne and spaceborne data, as well as the essential role of TLS in validation of spaceborne missions that monitor ecosystem structure.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres Agriculture & agronomie Biologie végétale (sciences végétales, sylviculture, mycologie...) Sciences de l’environnement & écologie
Akerblom, M., Raumonen, P., Kaasalainen, M., Casella, E., Analysis of geometric primitives in quantitative structure models of tree stems. Remote Sens. 7 (2015), 4581–4603.
Åkerblom, M., Raumonen, P., Mäkipää, R., Kaasalainen, M., Automatic tree species recognition with quantitative structure models. Remote Sens. Environ. 191 (2017), 1–12.
Åkerblom, M., Raumonen, P., Casella, E., Disney, M.I., Danson, F.M., Gaulton, R., Schofield, L.A., Kaasalainen, M., Non-intersecting leaf insertion algorithm for tree structure models. Interface Focus, 8, 2018, 20170045.
Arel, I., Rose, D.C., Karnowski, T.P., Deep machine learning - a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5 (2010), 13–18.
Ashcroft, M.B., Gollan, J.R., Ramp, D., Creating vegetation density profiles for a diverse range of ecological habitats using terrestrial laser scanning. Methods Ecol. Evol. 5 (2014), 263–272.
Asner, G.P., Scurlock, J.M.O., Hicke, A., Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 12 (2003), 191–205.
Atkins, J.W., Bohrer, G., Fahey, R.T., Hardiman, B.S., Morin, T.H., Stovall, A.E.L., Zimmerman, N., Gough, C.M., Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr r package. Methods Ecol. Evol. 9 (2018), 2057–2066.
Atkins, J.W., Fahey, R.T., Hardiman, B.H., Gough, C.M., Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 123 (2018), 1387–1405.
Baines, O., Wilkes, P., Disney, M., Quantifying urban forest structure with open-access remote sensing data sets. Urban For. Urban Green., 50, 2020, 126653.
Balsi, M., Esposito, S., Fallavollita, P., Nardinocchi, C., Single-tree detection in high-density LiDAR data from UAV-based survey. Eur. J. Remote Sens. 51 (2018), 679–692.
Barbeito, I., Dassot, M., Bayer, D., Collet, C., Drössler, L., Löf, M., del Rio, M., Ruiz-Peinado, R., Forrester, D.I., Bravo-Oviedo, A., Pretzsch, H., Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests. For. Ecol. Manag. 405 (2017), 381–390.
Bastin, J.-F., Fayolle, A., Tarelkin, Y., Van den Bulcke, J., de Haulleville, T., Mortier, F., Beeckman, H., Van Acker, J., Serckx, A., Bogaert, J., De Cannière, C., Wood specific gravity variations and biomass of Central African tree species: the simple choice of the outer wood. PLoS One, 10, 2015, e0142146.
Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P., Forest inventory with terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning. Forests, 7, 2016, 127.
Bayer, D., Seifert, S., Pretzsch, H., Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27 (2013), 1035–1047.
Béland, M., Widlowski, J.-L., Fournier, R.A., Côté, J.-F., Verstraete, M.M., Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric. For. Meteorol. 151 (2011), 1252–1266.
Béland, M., Baldocchi, D.D., Widlowski, J.-L., Fournier, R.A., Verstraete, M.M., On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agric. For. Meteorol. 184 (2014), 82–97.
Béland, M., Widlowski, J.-L., Fournier, R.A., A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environ. Model. Softw. 51 (2014), 184–189.
Beland, M., Parker, G., Sparrow, B., Harding, D., Chasmer, L., Phinn, S., Antonarakis, A., Strahler, A., On promoting the use of lidar systems in forest ecosystem research. For. Ecol. Manag., 450, 2019, 117484.
Belton, D., Moncrieff, S., Chapman, J., Processing tree point clouds using Gaussian mixture models. ISPRS annals of photogrammetry. Remote Sens. Spatial Informa. Sci. II-5:W2 (2013), 43–48.
Bentley, L.P., Stegen, J.C., Savage, V.M., Smith, D.D., von Allmen, E.I., Sperry, J.S., Reich, P.B., Enquist, B.J., An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecol. Lett. 16 (2013), 1069–1078.
Bienert, A., Georgi, L., Kunz, M., Maas, H.-G., Von Oheimb, G., Comparison and combination of Mobile and terrestrial laser scanning for natural Forest inventories. Forests, 9, 2018, 395.
Boni Vicari, M., Disney, M., Wilkes, P., Burt, A., Calders, K., Woodgate, W., Leaf and wood classification framework for terrestrial LiDAR point clouds. Methods Ecol. Evol. 10 (2019), 680–694.
Boni Vicari, M., Pisek, J., Disney, M., New estimates of leaf angle distribution from terrestrial LiDAR: comparison with measured and modelled estimates from nine broadleaf tree species. Agric. For. Meteorol. 264 (2019), 322–333.
Boucher, P., Characterizing the Impacts of the Invasive Hemlock Woolly Adelgid on the Forest Structure of New England. 2019, Univ. Massachusetts, Boston.
Brede, B., Lau, A., Bartholomeus, H.M., Kooistra, L., Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors, 2017, 17.
Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H.M., Herold, M., Kooistra, L., Non-destructive tree volume estimation through quantitative structure modelling: comparing UAV laser scanning with terrestrial LIDAR. Remote Sens. Environ., 233, 2019, 111355.
Bucksch, A., Lindenbergh, R., CAMPINO—A skeletonization method for point cloud processing. ISPRS J. Photogramm. Remote Sens. 63 (2008), 115–127.
Burt, A., Disney, M., Calders, K., Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 10 (2019), 438–445.
Burt, A., Calders, K., Cuni-Sanchez, A., Gómez-Dans, J., Lewis, P., Lewis, S.L., Malhi, Y., Phillips, O.L., Disney, M., Assessment of bias in pan-tropical biomass predictions. Front. For. Glob. Change, 3, 2020, 12.
Cabo, C., Del Pozo, S., Rodríguez-Gonzálvez, P., Ordóñez, C., González-Aguilera, D., Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level. Remote Sens., 10, 2018, 540.
Calders, K., Armston, J., Newnham, G., Herold, M., Goodwin, N., Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR. Agric. For. Meteorol. 194 (2014), 104–117.
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 6 (2015), 198–208.
Calders, K., Schenkels, T., Bartholomeus, H., Armston, J., Verbesselt, J., Herold, M., Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agric. For. Meteorol. 203 (2015), 158–168.
Calders, K., Disney, M.I., Armston, J., Burt, A., Brede, B., Origo, N., Muir, J., Nightingale, J., Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability. IEEE Trans. Geosci. Remote Sens. 55 (2017), 2716–2724.
Calders, K., Origo, N., Burt, A., Disney, M., Nightingale, J., Raumonen, P., Åkerblom, M., Malhi, Y., Lewis, P., Realistic forest stand reconstruction from terrestrial LiDAR for radiative transfer modelling. Remote Sens., 10, 2018, 933.
Calders, K., Origo, N., Disney, M., Nightingale, J., Woodgate, W., Armston, J., Lewis, P., Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index. Agric. For. Meteorol. 252 (2018), 231–240.
Calders, K., Phinn, S., Ferrari, R., Leon, J., Armston, J., Asner, G.P., Disney, M., 3D imaging insights into forests and coral reefs. Trends Ecol. Evol., 2020, 6–9.
Case, B.S., Hall, R.J., Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-Central Canada. Can. J. For. Res. 38 (2008), 878–889.
Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T., Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (2005), 87–99.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20 (2014), 3177–3190.
Chave, J., Davies, S.J., Phillips, O.L., Lewis, S.L., Sist, P., Schepaschenko, D., Armston, J., Baker, T.R., Coomes, D., Disney, M., Duncanson, L., Hérault, B., Labrière, N., Meyer, V., Réjou-Méchain, M., Scipal, K., Saatchi, S., Ground data are essential for biomass remote sensing missions. Surv. Geophys. 40 (2019), 863–880.
Chen, Y., Zhu, X., Yebra, M., Harris, S., Tapper, N., Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR. J. Appl. Remote. Sens., 10, 2016, 046025.
Chen, Y., Zhu, X., Yebra, M., Harris, S., Tapper, N., Development of a predictive model for estimating forest surface fuel load in Australian eucalypt forests with LiDAR data. Environ. Model. Softw. 97 (2017), 61–71.
Cifuentes, R., Van der Zande, D., Salas-Eljatib, C., Farifteh, J., Coppin, P., A simulation study using terrestrial LiDAR point cloud data to quantify spectral variability of a broad-leaved Forest canopy. Sensors, 18, 2018, 3357.
Côté, J.-F., Widlowski, J.-L., Fournier, R.A., Verstraete, M.M., The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens. Environ. 113 (2009), 1067–1081.
Culvenor, D.S., Newnham, G.J., Mellor, A., Sims, N.C., Haywood, A., Automated in-situ laser scanner for monitoring forest leaf area index. Sensors 14 (2014), 14994–15008.
Cuni-Sanchez, A., White, L.J.T., Calders, K., Jeffery, K.J., Abernethy, K., Burt, A., Disney, M., Gilpin, M., Gomez-Dans, J.L., Lewis, S.L., African savanna-Forest boundary dynamics: a 20-year study. PLoS One, 11, 2016, e0156934.
Danson, F.M., Gaulton, R., Armitage, R.P., Disney, M., Gunawan, O., Lewis, P., Pearson, G., Ramirez, F.A., Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure. Agric. For. Meteorol. 198-199 (2014), 7–14.
Danson, M.F., Sasse, F., Schofield, L.A., Spectral and spatial information from a novel dual-wavelength full-waveform terrestrial laser scanner for forest ecology. Interface Focus, 8, 2018, 20170049.
Decuyper, M., Mulatu, K.A., Brede, B., Calders, K., Armston, J., Rozendaal, D.M.A., Mora, B., Clevers, J.G., Kooistra, L., Herold, M., et al. Assessing the structural differences between tropical forest types using terrestrial laser scanning. For. Ecol. Manag. 429 (2018), 327–335.
Disney, M., Remote sensing of vegetation: Potentials, limitations, developments and applications. Hikosaka, K., Niinemets, Ü., Anten, N.P.R., (eds.) Canopy Photosynthesis: From Basics to Applications, 2016, Springer Netherlands, Dordrecht, 289–331.
Disney, M., Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. New Phytol. 222 (2019), 1736–1741.
Disney, M.I., Boni Vicari, M., Burt, A., Calders, K., Lewis, S.L., Raumonen, P., Wilkes, P., Weighing trees with lasers: advances, challenges and opportunities. Interface Focus, 8, 2018, 20170048.
Disney, M., Burt, A., Calders, K., Schaaf, C., Stovall, A., Innovations in ground and airborne technologies as reference and for training and validation: terrestrial laser scanning (TLS). Surv. Geophys., 1–22, 2019.
Donager, J.J., Sankey, T.T., Sankey, J.B., Sanchez Meador, A.J., Springer, A.E., Bailey, J.D., Examining forest structure with terrestrial Lidar: suggestions and novel techniques based on comparisons between scanners and Forest treatments. Life Support Biosph. Sci. 5 (2018), 753–776.
Douglas, E.S., Martel, J., Li, Z., Howe, G., Hewawasam, K., Marshall, R.A., Schaaf, C.L., Cook, T.A., Newnham, G.J., Strahler, A., Chakrabarti, S., Finding leaves in the forest: the dual-wavelength Echidna Lidar. IEEE Geosci. Remote Sens. Lett. 12 (2015), 776–780.
Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P.L., Qi, W., Silva, C., The global ecosystem dynamics investigation: high-resolution laser ranging of the earth's forests and topography. Sci. Remote Sens., 1, 2020, 100002.
Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave, J., Herold, M., Crowther, T.W., Falkowski, M., Kellner, J.R., Labrière, N., Lucas, R., MacBean, N., McRoberts, R.E., Meyer, V., Næsset, E., Nickeson, J.E., Paul, K.I., Phillips, O.L., Réjou-Méchain, M., Román, M., Roxburgh, S., Saatchi, S., Schepaschenko, D., Scipal, K., Siqueira, P.R., Whitehurst, A., Williams, M., The importance of consistent global Forest aboveground biomass product validation. Surv. Geophys. 40 (2019), 979–999.
Eitel, J.U.H., Vierling, L.A., Long, D.S., Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner. Remote Sens. Environ. 114 (2010), 2229–2237.
Elsherif, A., Gaulton, R., Mills, J., Four dimensional mapping of vegetation moisture content using dual-wavelength terrestrial laser scanning. Remote Sens., 11, 2019, 2311.
Elsherif, A., Gaulton, R., Shenkin, A., Malhi, Y., Mills, J., Three dimensional mapping of forest canopy equivalent water thickness using dual-wavelength terrestrial laser scanning. Agric. For. Meteorol., 276-277, 2019, 107627.
Enquist, B.J., Kerkhoff, A.J., Stark, S.C., Swenson, N.G., McCarthy, M.C., Price, C.A., A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449 (2007), 218–222.
Enquist, B.J., West, G.B., Brown, J.H., Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 7046–7051.
Eriksson, E., Thinning operations and their impact on biomass production in stands of Norway spruce and scots pine. Biomass Bioenergy 30 (2006), 848–854.
Fernández-Sarría, A., López-Cortés, I., Estornell, J., Velázquez-Martí, B., Salazar, D., Estimating residual biomass of olive tree crops using terrestrial laser scanning. Int. J. Appl. Earth Obs. Geoinf. 75 (2019), 163–170.
Fischer, M., Huss, M., Kummert, M., Hoelzle, M., Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. Cryosphere 10 (2016), 1279–1295.
Fleck, S., Mölder, I., Jacob, M., Gebauer, T., Jungkunst, H.F., Leuschner, C., Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest. Ann. For. Sci. 68 (2011), 1173–1185.
Fyllas, N.M., Bentley, L.P., Shenkin, A., Asner, G.P., Atkin, O.K., Díaz, S., Enquist, B.J., Farfan-Rios, W., Gloor, E., Guerrieri, R., Huasco, W.H., Ishida, Y., Martin, R.E., Meir, P., Phillips, O., Salinas, N., Silman, M., Weerasinghe, L.K., Zaragoza-Castells, J., Malhi, Y., Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 20 (2017), 730–740.
Gabbud, C., Micheletti, N., Lane, S.N., Lidar measurement of surface melt for a temperate Alpine glacier at the seasonal and hourly scales. J. Glaciol. 61 (2015), 963–974.
Gaulton, R., Danson, F.M., Ramirez, F.A., Gunawan, O., The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sens. Environ. 132 (2013), 32–39.
Georgi, L., Kunz, M., Fichtner, A., Härdtle, W., Reich, K.F., Sturm, K., Welle, T., von Oheimb, G., Long-term abandonment of Forest management has a strong impact on tree morphology and wood volume allocation pattern of European beech (Fagus sylvatica L.). Forests, 9, 2018, 704.
Gielen, B., Acosta, M., Altimir, N., Buchmann, N., Cescatti, A., Ceschia, E., Fleck, S., Hörtnagl, L., Klumpp, K., Kolari, P., Lohila, A., Loustau, D., Marañón-Jiménez, S., Manise, T., Matteucci, G., Merbold, L., Herschlein, C., Moureaux, C., Montagnani, L., Wohlfahrt, G., Ancillary vegetation measurements at ICOS ecosystem stations. Int. Agrophys. 32 (2018), 645–664.
Gonzalez de Tanago, J., Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumonen, P., Martius, C., Goodman, R.C., Disney, M., Manuri, S., Burt, A., Calders, K., Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9 (2018), 223–234.
Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 2016, MIT Press.
Goodman, R.C., Phillips, O.L., Baker, T.R., The importance of crown dimensions to improve tropical tree biomass estimates. Ecol. Appl. 24 (2014), 680–698.
Gottfried, M., Hollaus, M., Glira, P., Wieser, M., Milenković, M., Riegl, U., Pfennigbauer, M., First examples from the RIEGL VUX-SYS for forestry applications. Proceed. SilviLaser 2015 (2015), 105–107.
Grau, E., Durrieu, S., Fournier, R., Gastellu-Etchegorry, J.-P., Yin, T., Estimation of 3D vegetation density with terrestrial laser scanning data using voxels. A sensitivity analysis of influencing parameters. Remote Sens. Environ. 191 (2017), 373–388.
Guo, Q., Su, Y., Hu, T., Zhao, X., Wu, F., Li, Y., Liu, J., Chen, L., Xu, G., Lin, G., Zheng, Y., Lin, Y., Mi, X., Fei, L., Wang, X., An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China. Int. J. Remote Sens. 38 (2017), 2954–2972.
Hackenberg, J., Spiecker, H., Calders, K., Disney, M., Raumonen, P., SimpleTree—an efficient open source tool to build tree models from TLS clouds. Forests 6 (2015), 4245–4294.
Hajek, P., Seidel, D., Leuschner, C., Mechanical abrasion, and not competition for light, is the dominant canopy interaction in a temperate mixed forest. For. Ecol. Manag. 348 (2015), 108–116.
Halupka, K., Garnavi, R., Moore, S., Deep semantic instance segmentation of tree-like structures using synthetic data. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 2019, 1713–1722.
Hancock, S., Essery, R., Reid, T., Carle, J., Baxter, R., Rutter, N., Huntley, B., Characterising forest gap fraction with terrestrial lidar and photography: an examination of relative limitations. Agric. For. Meteorol. 189-190 (2014), 105–114.
Hancock, S., Anderson, K., Disney, M., Gaston, K.J., Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: calibration and validation with voxelised terrestrial lidar. Remote Sens. Environ. 188 (2017), 37–50.
Hancock, S., Armston, J., Hofton, M., Sun, X., Tang, H., Duncanson, L.I., Kellner, J.R., Dubayah, R., The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions. Earth Space Sci., 2019, 294–310.
Hartzell, P.J., Glennie, C.L., Finnegan, D.C., Empirical waveform decomposition and radiometric calibration of a terrestrial full-waveform laser scanner. IEEE Trans. Geosci. Remote Sens. 53 (2015), 162–172.
Henning, J.G., Radtke, P.J., Detailed stem measurements of standing trees from ground-based scanning Lidar. For. Sci. 52 (2006), 67–80.
Henry, M., Picard, N., Trotta, C., Manlay, R., Valentini, R., Bernoux, M., Saint-André, L., Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn., 45, 2011, 38.
Hess, C., Härdtle, W., Kunz, M., Fichtner, A., von Oheimb, G., A high-resolution approach for the spatiotemporal analysis of forest canopy space using terrestrial laser scanning data. Ecol. Evol. 8 (2018), 6800–6811.
Hofman, J., Bartholomeus, H., Calders, K., Van Wittenberghe, S., Wuyts, K., Samson, R., On the relation between tree crown morphology and particulate matter deposition on urban tree leaves: a ground-based LiDAR approach. Atmos. Environ. 99 (2014), 130–139.
Hofman, J., Bartholomeus, H., Janssen, S., Calders, K., Wuyts, K., Van Wittenberghe, S., Samson, R., Influence of tree crown characteristics on the local PM10 distribution inside an urban street canyon in Antwerp (Belgium): a model and experimental approach. Urban For. Urban Green. 20 (2016), 265–276.
Hopkinson, C., Chasmer, L., Young-Pow, C., Treitz, P., Assessing forest metrics with a ground-based scanning lidar. Can. J. For. Res. 34 (2004), 573–583.
Hosoi, F., Omasa, K., Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning Lidar. IEEE Trans. Geosci. Remote Sens. 44 (2006), 3610–3618.
Hudak, A.T., Evans, J.S., Stuart Smith, A.M., LiDAR utility for natural resource managers. Remote Sens. 1 (2009), 934–951.
Huo, L., Zhang, N., Zhang, X., Wu, Y., Tree defoliation classification based on point distribution features derived from single-scan terrestrial laser scanning data. Ecol. Indic. 103 (2019), 782–790.
Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J.C., Wulder, M.A., Pyörälä, J., Liang, X., Yu, X., Wang, Y., Kaartinen, H., Virtanen, J.-P., Hyyppä, J., Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS J. Photogramm. Remote Sens. 161 (2020), 246–262.
Itakura, K., Hosoi, F., Estimation of leaf inclination angle in three-dimensional plant images obtained from Lidar. Remote Sens., 11, 2019, 344.
Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., Lin, Y., A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm. Remote Sens. 65 (2010), 514–522.
Jackson, T., Shenkin, A., Moore, J., Bunce, A., van Emmerik, T., Kane, B., Burcham, D., James, K., Selker, J., Calders, K., Origo, N., Disney, M., Burt, A., Wilkes, P., Raumonen, P., Gonzalez de Tanago Menaca, J., Lau, A., Herold, M., Goodman, R.C., Fourcaud, T., Malhi, Y., An architectural understanding of natural sway frequencies in trees. J. R. Soc. Interface, 16, 2019, 20190116.
Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F., Review of methods for in situ leaf area index determination: part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 121 (2004), 19–35.
Juchheim, J., Ammer, C., Schall, P., Seidel, D., Canopy space filling rather than conventional measures of structural diversity explains productivity of beech stands. For. Ecol. Manag. 395 (2017), 19–26.
Juchheim, J., Annighöfer, P., Ammer, C., Calders, K., Raumonen, P., Seidel, D., How management intensity and neighborhood composition affect the structure of beech (Fagus sylvatica L.) trees. Trees 31 (2017), 1723–1735.
Juchheim, J., Ehbrecht, M., Schall, P., Ammer, C., Seidel, D., Effect of tree species mixing on stand structural complexity. Forestry 93 (2020), 75–83.
Junttila, S., Holopainen, M., Vastaranta, M., Lyytikäinen-Saarenmaa, P., Kaartinen, H., Hyyppä, J., Hyyppä, H., The potential of dual-wavelength terrestrial lidar in early detection of Ips typographus (L.) infestation – leaf water content as a proxy. Remote Sens. Environ., 231, 2019, 111264.
Juodvalkis, A., Kairiukstis, L., Vasiliauskas, R., Effects of thinning on growth of six tree species in north-temperate forests of Lithuania. Eur. J. For. Res. 124 (2005), 187–192.
Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, G.J., Strahler, A.H., Woodcock, C.E., Estimating forest LAI profiles and structural parameters using a ground-based laser called Echidna. Tree Physiol. 29 (2009), 171–181.
Kaasalainen, S., Krooks, A., Liski, J., Raumonen, P., Kaartinen, H., Kaasalainen, M., Puttonen, E., Anttila, K., Mäkipää, R., Change detection of tree biomass with terrestrial laser scanning and quantitative structure modelling. Remote Sens. 6 (2014), 3906–3922.
Kahlmann, T., Remondino, F., Ingensand, H., Calibration for increased accuracy of the range imaging camera swissranger. Proceedings of the ISPRS Commission V Symposium'Image Engineering and Vision Metrology'. Isprs, 2006, 136–141.
Kankare, V., Holopainen, M., Vastaranta, M., Puttonen, E., Yu, X., Hyyppä, J., Vaaja, M., Hyyppä, H., Alho, P., Individual tree biomass estimation using terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 75 (2013), 64–75.
Kao, R.H., Gibson, C.M., Gallery, Rachel E., Meier, C.L., Barnett, D.T., Docherty, K.M., Blevins, K.K., Travers, P.D., Azuaje, E., Springer, Y.P., Thibault, K.M., McKenzie, V.J., Keller, M., Alves, L.F., Hinckley, E.-L.S., Parnell, J., Schimel, D., NEON terrestrial field observations: designing continental-scale, standardized sampling. Ecosphere, 3, 2012, 115.
Karan, M., Liddell, M., Prober, S.M., Arndt, S., Beringer, J., Boer, M., Cleverly, J., Eamus, D., Grace, P., Van Gorsel, E., Hero, J.-M., Hutley, L., Macfarlane, C., Metcalfe, D., Meyer, W., Pendall, E., Sebastian, A., Wardlaw, T., The Australian supersite network: a continental, long-term terrestrial ecosystem observatory. Sci. Total Environ. 568 (2016), 1263–1274.
Kelbe, D., van Aardt, J., Romanczyk, P., van Leeuwen, M., Cawse-Nicholson, K., Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics. IEEE Trans. Geosci. Remote Sens. 54 (2016), 4314–4330.
Kellner, J.R., Armston, J., Birrer, M., Cushman, K.C., Duncanson, L., Eck, C., Falleger, C., Imbach, B., Král, K., Krůček, M., Trochta, J., Vrška, T., Zgraggen, C., New opportunities for forest remote sensing through ultra-high-density drone Lidar. Surv. Geophys. 40 (2019), 959–977.
Krishna Moorthy, S.M., Bao, Y., Calders, K., Schnitzer, S.A., Verbeeck, H., Semi-automatic extraction of liana stems from terrestrial LiDAR point clouds of tropical rainforests. ISPRS J. Photogramm. Remote Sens. 154 (2019), 114–126.
Krishna Moorthy, S.M., Calders, K., Boni Vicari, M., Verbeeck, H., Improved supervised learning-based approach for leaf and wood classification From LiDAR point clouds of forests. IEEE Trans. Geosci. Remote Sens., 2019, 1–14.
Krishna Moorthy, S.M., Raumonen, P., Van den Bulcke, J., Calders, K., Verbeeck, H., Terrestrial laser scanning for non-destructive estimates of liana stem biomass. For. Ecol. Manag., 456, 2020, 117751.
Krůček, M., Trochta, J., Cibulka, M., Král, K., Beyond the cones: how crown shape plasticity alters aboveground competition for space and light—evidence from terrestrial laser scanning. Agric. For. Meteorol. 264 (2019), 188–199.
Kunz, M., Fichtner, A., Härdtle, W., Raumonen, P., Bruelheide, H., von Oheimb, G., Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22 (2019), 2130–2140.
Kuusk, A., Leaf orientation measurement in a mixed hemiboreal broadleaf forest stand using terrestrial laser scanner. Trees 34 (2020), 371–380.
Lau, A., Bentley, L.P., Martius, C., Shenkin, A., Bartholomeus, H., Raumonen, P., Malhi, Y., Jackson, T., Herold, M., Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees 32 (2018), 1219–1231.
Lau, A., Calders, K., Bartholomeus, H., Martius, C., Raumonen, P., Herold, M., Vicari, M., Sukhdeo, H., Singh, J., Goodman, R.C., Tree biomass equations from terrestrial LiDAR: a case study in Guyana. Forests, 10, 2019, 527.
Lau, A., Martius, C., Bartholomeus, H., Shenkin, A., Jackson, T., Malhi, Y., Herold, M., Bentley, L.P., Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. For. Ecol. Manag. 439 (2019), 132–145.
Lefsky, M.A., McHale, M.R., Volume estimates of trees with complex architecture from terrestrial laser scanning. J. Appl. Remote. Sens., 2, 2008, 023521.
Lercari, N., Terrestrial laser scanning in the age of sensing. Forte, M., Campana, S., (eds.) Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing, 2016, Springer International Publishing, Cham, 3–33.
Li, Z., Jupp, D.L.B., Strahler, A.H., Schaaf, C.B., Howe, G., Hewawasam, K., Douglas, E.S., Chakrabarti, S., Cook, T.A., Paynter, I., Saenz, E.J., Schaefer, M., Radiometric calibration of a dual-wavelength, full-waveform terrestrial Lidar. Sensors, 16, 2016, 313.
Li, Z., Schaefer, M., Strahler, A., Schaaf, C., Jupp, D., On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements. Interface Focus, 8, 2018, 20170039.
Li, J., Wang, N., Zhang, L., Du, B., Tao, D., Recurrent feature reasoning for image inpainting. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 7760–7768.
Liang, X., Litkey, P., Hyyppa, J., Kaartinen, H., Vastaranta, M., Holopainen, M., Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 50 (2012), 661–670.
Liang, X., Wang, Y., Jaakkola, A., Kukko, A., Kaartinen, H., Hyyppä, J., Honkavaara, E., Liu, J., Forest data collection using terrestrial image-based point clouds from a handheld camera compared to terrestrial and personal laser scanning. IEEE Trans. Geosci. Remote Sens. 53 (2015), 5117–5132.
Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., Vastaranta, M., Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 115 (2016), 63–77.
Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., Holopainen, M., Brolly, G., Francesco, P., Hackenberg, J., Huang, H., Jo, H.-W., Katoh, M., Liu, L., Mokroš, M., Morel, J., Olofsson, K., Poveda-Lopez, J., Trochta, J., Wang, D., Wang, J., Xi, Z., Yang, B., Zheng, G., Kankare, V., Luoma, V., Yu, X., Chen, L., Vastaranta, M., Saarinen, N., Wang, Y., International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogramm. Remote Sens. 144 (2018), 137–179.
Liang, X., Wang, Y., Pyörälä, J., Lehtomäki, M., Yu, X., Kaartinen, H., Kukko, A., Honkavaara, E., Issaoui, A.E.I., Nevalainen, O., Vaaja, M., Virtanen, J.-P., Katoh, M., Deng, S., Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. For. Ecosyst., 6, 2019, 20.
Liski, J., Kaasalainen, S., Raumonen, P., Akujärvi, A., Krooks, A., Repo, A., Kaasalainen, M., Indirect emissions of forest bioenergy: detailed modeling of stump-root systems. GCB Bioenergy 6 (2014), 777–784.
Liu, J., Skidmore, A.K., Wang, T., Zhu, X., Premier, J., Heurich, M., Beudert, B., Jones, S., Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest. ISPRS J. Photogramm. Remote Sens. 148 (2019), 208–220.
Loudermilk, E.L., Hiers, J.K., O'Brien, J.J., Mitchell, R.J., Singhania, A., Fernandez, J.C., Cropper, W.P., Slatton, K.C., Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics. Int. J. Wildland Fire 18 (2009), 676–685.
Lovell, J.L., Jupp, D.L.B., Culvenor, D.S., Coops, N.C., Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can. J. Remote. Sens. 29 (2003), 607–622.
Luoma, V., Saarinen, N., Kankare, V., Tanhuanpää, T., Kaartinen, H., Kukko, A., Holopainen, M., Hyyppä, J., Vastaranta, M., Examining changes in stem taper and volume growth with two-date 3D point clouds. For. Trees Livelihoods, 10, 2019, 382.
Maas, H.G., Bienert, A., Scheller, S., Keane, E., Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 29 (2008), 1579–1593.
Magney, T.S., Eusden, S.A., Eitel, J.U.H., Logan, B.A., Jiang, J., Vierling, L.A., Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy photosynthetic performance in three dimensions. New Phytol. 201 (2014), 344–356.
Maguire, A.J., Eitel, J.U.H., Vierling, L.A., Johnson, D.M., Griffin, K.L., Boelman, N.T., Jensen, J.E., Greaves, H.E., Meddens, A.J.H., Terrestrial lidar scanning reveals fine-scale linkages between microstructure and photosynthetic functioning of small-stature spruce trees at the forest-tundra ecotone. Agric. For. Meteorol. 269-270 (2019), 157–168.
Mäkinen, H., Isomäki, A., Thinning intensity and long-term changes in increment and stem form of scots pine trees. For. Ecol. Manag. 203 (2004), 21–34.
Malhi, Y., Jackson, T., Patrick Bentley, L., Lau, A., Shenkin, A., Herold, M., Calders, K., Bartholomeus, H., Disney, M.I., New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus, 8, 2018, 20170052.
Marselis, S.M., Tang, H., Armston, J.D., Calders, K., Labrière, N., Dubayah, R., Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic: a case study in Lopé National Park. Gabon. Remote Sens. Environ. 216 (2018), 626–634.
Martin-Ducup, O., Schneider, R., Fournier, R., Analyzing the vertical distribution of crown material in mixed stand composed of two temperate tree species. For. Trees Livelihoods, 9, 2018, 673.
Mengesha, T., Hawkins, M., Nieuwenhuis, M., Validation of terrestrial laser scanning data using conventional forest inventory methods. Eur. J. For. Res. 134 (2015), 211–222.
Metz, J., Seidel, D., Schall, P., Scheffer, D., Schulze, E.-D., Ammer, C., Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. For. Ecol. Manag. 310 (2013), 275–288.
Miao, Y., Liu, J., Chen, J., Shu, Z., Structure-preserving shape completion of 3D point clouds with generative adversarial network. Sci. Sin. Informa. 50 (2020), 675–691.
Momo Takoudjou, S., Ploton, P., Sonké, B., Hackenberg, J., Griffon, S., de Coligny, F., Kamdem, N.G., Libalah, M., Mofack, G.I.I., Le Moguédec, G., Pélissier, R., Barbier, N., Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: a comparison with traditional destructive approach. Methods Ecol. Evol. 9 (2018), 905–916.
Momo Takoudjou, S., Ploton, P., Martin-Ducup, O., Lehnebach, R., Fortunel, C., Sagang, L.B.T., Boyemba, F., Couteron, P., Fayolle, A., Libalah, M., Loumeto, J., Medjibe, V., Ngomanda, A., Obiang, D., Pélissier, R., Rossi, V., Yongo, O., Sonké, B., Barbier, N., Leveraging signatures of plant functional strategies in wood density profiles of African trees to correct mass estimations from terrestrial laser data. Sci. Rep., 10, 2020, 2001.
Moorthy, I., Miller, J.R., Berni, J.A.J., Zarco-Tejada, P., Hu, B., Chen, J., Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agric. For. Meteorol. 151 (2011), 204–214.
Morel, J., Bac, A., Véga, C., Surface reconstruction of incomplete datasets: a novel Poisson surface approach based on CSRBF. Comput. Graph. 74 (2018), 44–55.
Morsdorf, F., Schneider, F.D., Gullien, C., Kükenbrink, D., Leiterer, R., Schaepman, M.E., The Laegeren site: An augmented Forest Laboratory. Cavender-Bares, J., Gamon, J.A., Townsend, P.A., (eds.) Remote Sensing of Plant Biodiversity, 2020, Springer International Publishing, Cham, 83–104.
Murray, J., Fennell, J.T., Blackburn, G.A., Whyatt, J.D., Li, B., The novel use of proximal photogrammetry and terrestrial LiDAR to quantify the structural complexity of orchard trees. Precis. Agric. 21 (2020), 473–483.
Newnham, G., Armston, J., Muir, J., Goodwin, N., Tindall, D., Culvenor, D., Püschel, P., Nyström, M., Johansen, K., Evaluation of Terrestrial Laser Scanners for Measuring Vegetation Structure (No. EP124571). CSIRO Sustainable Agriculture Flagship. 2012, 10.4225/08/584af4ccc9a19.
Nilsson, U., Thinning of Scots Pine and Norway Spruce Monocultures in Sweden: Effects of Different Thinning Programmes on Stand Level Gross- and Net Stem Volume Production. 2010, Studia forestalia Suecica. Swedish University of Agricultural Sciences, Faculty of Forest Sciences, Umeå.
Othmani, A., Lew Yan Voon, L.F.C., Stolz, C., Piboule, A., Single tree species classification from terrestrial laser scanning data for forest inventory. Pattern Recogn. Lett. 34 (2013), 2144–2150.
Palace, M., Sullivan, F.B., Ducey, M., Herrick, C., Estimating tropical forest structure using a terrestrial Lidar. PLoS One, 11, 2016, e0154115.
Paris, C., Kelbe, D., van Aardt, J., Bruzzone, L., A precise estimation of the 3D structure of the forest based on the fusion of airborne and terrestrial lidar data. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015, 49–52.
Parker, G.G., Harding, D.J., Berger, M.L., A portable LIDAR system for rapid determination of forest canopy structure. J. Appl. Ecol. 41 (2004), 755–767.
Paynter, I., Saenz, E., Genest, D., Peri, F., Erb, A., Li, Z., Wiggin, K., Muir, J., Raumonen, P., Schaaf, E.S., et al. Observing ecosystems with lightweight, rapid-scanning terrestrial lidar scanners. Remote. Sens. Ecol. Conserv. 2 (2016), 174–189.
Paynter, I., Genest, D., Peri, F., Schaaf, C., Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems. Interface Focus, 8, 2018, 20170043.
Paynter, I., Schaaf, C., Bowen, J.L., Deegan, L., Peri, F., Cook, B., Characterizing a New England saltmarsh with NASA G-LiHT airborne Lidar. Remote Sens., 11, 2019, 509.
Pimont, F., Allard, D., Soma, M., Dupuy, J.-L., Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sens. Environ. 215 (2018), 343–370.
Pitkänen, T.P., Raumonen, P., Kangas, A., Measuring stem diameters with TLS in boreal forests by complementary fitting procedure. ISPRS J. Photogramm. Remote Sens. 147 (2019), 294–306.
Ploton, P., Barbier, N., Momo, S.T., Réjou-Méchain, M., Bosela, F.B., Chuyong, G., Dauby, G., Droissart, V., Fayolle, A., Goodman, R.C., Henry, M., Kamdem, N.G., Mukirania, J.K., Kenfack, D., Libalah, M., Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., Pélissier, R., Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences 13 (2016), 1571–1585.
Puttonen, E., Lehtomäki, M., Litkey, P., Näsi, R., Feng, Z., Liang, X., Wittke, S., Pandžić, M., Hakala, T., Karjalainen, M., Pfeifer, N., A clustering framework for monitoring circadian rhythm in structural dynamics in plants from terrestrial laser scanning time series. Front. Plant Sci., 10, 2019, 486.
Pyörälä, J., Liang, X., Vastaranta, M., Saarinen, N., Kankare, V., Wang, Y., Holopainen, M., Hyyppä, J., Quantitative assessment of scots pine (Pinus Sylvestris L.) whorl structure in a forest environment using terrestrial laser scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (2018), 3598–3607.
Pyörälä, J., Kankare, V., Liang, X., Saarinen, N., Rikala, J., Kivinen, V.-P., Sipi, M., Holopainen, M., Hyyppä, J., Vastaranta, M., Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds. Forestry Int. J. For. Res. 92 (2019), 177–187.
Pyörälä, J., Saarinen, N., Kankare, V., Coops, N.C., Liang, X., Wang, Y., Holopainen, M., Hyyppä, J., Vastaranta, M., Variability of wood properties using airborne and terrestrial laser scanning. Remote Sens. Environ., 235, 2019, 111474.
Qi, C.R., Su, H., Mo, K., Guibas, L.J., PointNet: deep learning on point sets for 3D classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 652–660.
Qi, C.R., Yi, L., Su, H., Guibas, L.J., PointNet++: Deep hierarchical feature learning on point sets in a metric space. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., (eds.) Advances in Neural Information Processing Systems 30, 2017, Curran Associates, Inc, 5099–5108.
Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J.-F., Minh, D.H.T., Lomas, M., D'Alessandro, M.M., Paillou, P., Papathanassiou, K., Rocca, F., Saatchi, S., Scipal, K., Shugart, H., Smallman, T.L., Soja, M.J., Tebaldini, S., Ulander, L., Villard, L., Williams, M., The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens. Environ. 227 (2019), 44–60.
Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., Lewis, P., Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 5 (2013), 491–520.
Raumonen, P., Åkerblom, M., Kaasalainen, M., Casella, E., Calders, K., Murphy, S., Massive-scale tree modelling from TLS data. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2, 2015.
Rehush, N., Abegg, M., Waser, L., Brändli, U.-B., Identifying tree-related microhabitats in TLS point clouds using machine learning. Remote Sens., 10, 2018, 1735.
Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., Mermoz, S., Saatchi, S., Chave, J., de Boissieu, F., Féret, J.-B., Takoudjou, S.M., Pélissier, R., Upscaling Forest biomass from field to satellite measurements: sources of errors and ways to reduce them. Surv. Geophys. 40 (2019), 881–911.
Riegler, G., Ulusoy, A.O., Geiger, A., OctNet: learning deep 3D representations at high resolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 6620–6629.
Río, M.D., Del Río, M., Bravo-Oviedo, A., Pretzsch, H., Löf, M., Ruiz-Peinado, R., A review of thinning effects on scots pine stands: from growth and yield to new challenges under global change. For. Syst., 26, 2017 (eR03S).
Rosen, P.A., Hensley, S., Shaffer, S., Veilleux, L., Chakraborty, M., Misra, T., Bhan, R., Raju Sagi, V., Satish, R., The NASA-ISRO SAR mission - An international space partnership for science and societal benefit. 2015 IEEE Radar Conference (RadarCon), 2015, 1610–1613.
Ross, J., The Radiation Regime and Architecture of Plant Stands. 1981, W. Junk Publishers, The Hague.
Saarinen, N., Vastaranta, M., Kankare, V., Tanhuanpää, T., Holopainen, M., Hyyppä, J., Hyyppä, H., Urban-tree-attribute update using multisource single-tree inventory. Forests 5 (2014), 1032–1052.
Saarinen, N., Kankare, V., Vastaranta, M., Luoma, V., Pyörälä, J., Tanhuanpää, T., Liang, X., Kaartinen, H., Kukko, A., Jaakkola, A., Yu, X., Holopainen, M., Hyyppä, J., Feasibility of terrestrial laser scanning for collecting stem volume information from single trees. ISPRS J. Photogramm. Remote Sens. 123 (2017), 140–158.
Saarinen, N., Kankare, V., Pyörälä, J., Yrttimaa, T., Liang, X., Wulder, M.A., Holopainen, M., Hyyppä, J., Vastaranta, M., Assessing the effects of sample size on parametrizing a taper curve equation and the resultant stem-volume estimates. Forests, 10, 2019, 848.
Saarinen, N., Kankare, V., Yrttimaa, T., Viljanen, N., Honkavaara, E., Holopainen, M., Hyyppä, J., Huuskonen, S., Hynynen, J., Vastaranta, M., Assessing the effects of thinning on stem growth allocation of individual scots pine trees. For. Ecol. Manag., 474, 2020, 118344.
Sagang, L.B.T., Momo, S.T., Libalah, M.B., Rossi, V., Fonton, N., Mofack, G.I.I., Kamdem, N.G., Nguetsop, V.F., Sonké, B., Ploton, P., Barbier, N., Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. For. Ecol. Manag. 424 (2018), 519–528.
Savage, V.M., Bentley, L.P., Enquist, B.J., Sperry, J.S., Smith, D.D., Reich, P.B., von Allmen, E.I., Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 22722–22727.
Schaepman, M.E., Jehle, M., Hueni, A., D'Odorico, P., Damm, A., Weyermann, J., Schneider, F.D., Laurent, V., Popp, C., Seidel, F.C., Lenhard, K., Gege, P., Küchler, C., Brazile, J., Kohler, P., De Vos, L., Meuleman, K., Meynart, R., Schläpfer, D., Kneubühler, M., Itten, K.I., Advanced radiometry measurements and earth science applications with the airborne prism experiment (APEX). Remote Sens. Environ. 158 (2015), 207–219.
Schneider, F.D., Leiterer, R., Morsdorf, F., Gastellu-Etchegorry, J.-P., Lauret, N., Pfeifer, N., Schaepman, M.E., Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data. Remote Sens. Environ. 152 (2014), 235–250.
Schneider, F.D., Kükenbrink, D., Schaepman, M.E., Schimel, D.S., Morsdorf, F., Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agric. For. Meteorol. 268 (2019), 249–257.
Schofield, L.A., Danson, F.M., Entwistle, N.S., Gaulton, R., Hancock, S., Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks. Remote Sens. Lett. 7 (2016), 299–308.
Seidel, D., Leuschner, C., Müller, A., Krause, B., Crown plasticity in mixed forests—quantifying asymmetry as a measure of competition using terrestrial laser scanning. For. Ecol. Manag. 261 (2011), 2123–2132.
Seidel, D., Fleck, S., Leuschner, C., Analyzing forest canopies with ground-based laser scanning: a comparison with hemispherical photography. Agric. For. Meteorol. 154-155 (2012), 1–8.
Seidel, D., Schall, P., Gille, M., Ammer, C., Relationship between tree growth and physical dimensions of Fagus sylvatica crowns assessed from terrestrial laser scanning. iForest - Biogeosci. For. 8 (2015), 735–742.
Seidel, D., Ruzicka, K.J., Puettmann, K., Canopy gaps affect the shape of Douglas-fir crowns in the western cascades, Oregon. For. Ecol. Manag. 363 (2016), 31–38.
Shenkin, A., Chandler, C.J., Boyd, D.S., Jackson, T., Disney, M., Majalap, N., Nilus, R., Foody, G., Bin Jami, J., Reynolds, G., Wilkes, P., Cutler, M.E.J., van der Heijden, G.M.F., Burslem, D.F.R.P., Coomes, D.A., Bentley, L.P., Malhi, Y., The world's tallest tropical tree in three dimensions. Front. For. Glob. Change, 2, 2019, 32.
Sheppard, J., Morhart, C., Hackenberg, J., Spiecker, H., Terrestrial laser scanning as a tool for assessing tree growth. iForest-Biogeosci. For., 10, 2016, 172.
Shu, D.W., Park, S.W., Kwon, J., 3d point cloud generative adversarial network based on tree structured graph convolutions. Proceedings of the IEEE International Conference on Computer Vision, 2019, 3859–3868.
Singh, J., Levick, S.R., Guderle, M., Schmullius, C., Trumbore, S.E., Variability in fire-induced change to vegetation physiognomy and biomass in semi-arid savanna. Ecosphere, 9, 2018, e02514.
Singh, J., Levick, S.R., Guderle, M., Schmullius, C., Moving from plot-based to hillslope-scale assessments of savanna vegetation structure with long-range terrestrial laser scanning (LR-TLS). Int. J. Appl. Earth Obs. Geoinf., 90, 2020, 102070.
Sithole, G., Vosselman, G., Report: ISPRS Comparison of Filters. 2003, Delft University of Technology.
Smith, D.D., Sperry, J.S., Enquist, B.J., Savage, V.M., McCulloh, K.A., Bentley, L.P., Deviation from symmetrically self-similar branching in trees predicts altered hydraulics, mechanics, light interception and metabolic scaling. New Phytol. 201 (2014), 217–229.
Specht, R.L., Vegetation. Leeper, G.W., (eds.) Australian Environment, 1970, Melbourne University Press, 44–67.
Srinivasan, S., Popescu, S.C., Eriksson, M., Sheridan, R.D., Ku, N.-W., Multi-temporal terrestrial laser scanning for modeling tree biomass change. For. Ecol. Manag. 318 (2014), 304–317.
Srinivasan, S., Popescu, S., Eriksson, M., Sheridan, R., Ku, N.-W., Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sens. 7 (2015), 1877–1896.
Stobo-Wilson, A.M., Murphy, B.P., Cremona, T., Carthew, S.M., Levick, S.R., Illuminating den-tree selection by an arboreal mammal using terrestrial laser scanning in northern Australia. Remote. Sens. Ecol. Conser., 2020, 10.1002/rse2.177.
Stovall, A.E.L., Shugart, H.H., Improved biomass calibration and validation with terrestrial LiDAR: implications for future LiDAR and SAR missions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (2018), 3527–3537.
Stovall, A.E.L., Vorster, A.G., Anderson, R.S., Evangelista, P.H., Shugart, H.H., Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR. Remote Sens. Environ. 200 (2017), 31–42.
Strahler, A.H., Jupp, D.L.B., Woodcock, C.E., Schaaf, C.B., Yao, T., Zhao, F., Yang, X., Lovell, J., Culvenor, D., Newnham, G., Ni-Miester, W., Boykin-Morris, W., Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna). Can. J. Remote. Sens. 34 (2008), S426–S440.
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., Multi-view convolutional neural networks for 3D shape recognition. 2015 IEEE International Conference on Computer Vision (ICCV), 2015, 945–953.
Tanhuanpää, T., Yu, X., Luoma, V., Saarinen, N., Raisio, J., Hyyppä, J., Kumpula, T., Holopainen, M., Effect of canopy structure on the performance of tree mapping methods in urban parks. Urban For. Urban Green., 44, 2019, 126441.
Terryn, L., Calders, K., Disney, M., Origo, N., Malhi, Y., Newnham, G., Raumonen, P., Akerblom, M., Verbeeck, H., Tree species classification using structural features derived from terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 168 (2020), 170–181.
Tian, J., Dai, T., Li, H., Liao, C., Teng, W., Hu, Q., Ma, W., Xu, Y., A novel tree height extraction approach for individual trees by combining TLS and UAV image-based point cloud integration. Forests, 10, 2019, 537.
Toan, T.L., Le Toan, T., Quegan, S., Davidson, M.W.J., Balzter, H., Paillou, P., Papathanassiou, K., Plummer, S., Rocca, F., Saatchi, S., Shugart, H., Ulander, L., The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 115 (2011), 2850–2860.
Toshev, A., Szegedy, C., DeepPose: human pose estimation via deep neural networks. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1653–1660.
Trochta, J., Krůček, M., Vrška, T., Král, K., 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS One, 12, 2017, e0176871.
Vaaja, M., Virtanen, J.-P., Kurkela, M., Lehtola, V., Hyyppä, J., Hyyppä, H., et al. The effect of wind on tree stem parameter estimation using terrestrial laser scanning. ISPRS Ann. Photogramm., Remote Sens. Spatial Inf. Sci 8 (2016), 117–122.
Valbuena, R., O'Connor, B., Zellweger, F., Simonson, W., Vihervaara, P., Maltamo, M., Silva, C.A., Almeida, D.R.A., Danks, F., Morsdorf, F., Chirici, G., Lucas, R., Coomes, D.A., Coops, N.C., Standardizing ecosystem morphological traits from 3D information sources. Trends Ecol. Evol., 2020, 656–667.
Valinger, E., Sjögren, H., Nord, G., Cedergren, J., Effects on stem growth of scots pine 33 years after thinning and/or fertilization in northern Sweden. Scand. J. For. Res. 34 (2019), 33–38.
Verbeeck, H., Bauters, M., Jackson, T., Shenkin, A., Disney, M., Calders, K., Time for a plant structural economics spectrum. Front. For. Glob. Change, 2, 2019, 43.
Vorster, A.G., Evangelista, P.H., Stovall, A.E.L., Ex, S., Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations. Carbon Balance Manag., 15, 2020, 8.
Wallace, L., Lucieer, A., Watson, C., Turner, D., Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 4 (2012), 1519–1543.
Wallace, L., Lucieer, A., Watson, C.S., Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Trans. Geosci. Remote Sens. 52 (2014), 7619–7628.
Wallace, L., Musk, R., Lucieer, A., An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data. IEEE Trans. Geosci. Remote Sens. 52 (2014), 7160–7169.
Wallace, L., Gupta, V., Reinke, K., Jones, S., An assessment of pre- and post fire near surface fuel Hazard in an Australian dry Sclerophyll Forest using point cloud data captured using a terrestrial laser scanner. Remote Sens., 8, 2016, 679.
Wang, D., Unsupervised semantic and instance segmentation of forest point clouds. ISPRS J. Photogramm. Remote Sens. 165 (2020), 86–97.
Wang, D., Brunner, J., Ma, Z., Lu, H., Hollaus, M., Pang, Y., Pfeifer, N., Separating tree photosynthetic and non-photosynthetic components from point cloud data using dynamic segment merging. For. Trees Livelihoods, 9, 2018, 252.
Wang, D., Momo Takoudjou, S., Casella, E., LeWoS: a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods Ecol. Evol. 11 (2020), 376–389.
Wang, D., Schraik, D., Hovi, A., Rautiainen, M., Direct estimation of photon recollision probability using terrestrial laser scanning. Remote Sens. Environ., 247, 2020, 111932.
Wassenberg, M., Chiu, H.-S., Guo, W., Spiecker, H., Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees 29 (2015), 551–561.
Weber, J., Penn, J., Creation and rendering of realistic trees. SIGGRAPH 1995, Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995, 119–128.
Wehr, A., Lohr, U., Airborne laser scanning - an introduction and overview. ISPRS J. Photogramm. Remote Sens. 54 (1999), 68–82.
West, G.B., Brown, J.H., Enquist, B.J., A general model for the origin of allometric scaling laws in biology. Science 276 (1997), 122–126.
West, G.B., Enquist, B.J., Brown, J.H., A general quantitative theory of forest structure and dynamics. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 7040–7045.
Widlowski, J.-L., Côté, J.-F., Béland, M., Abstract tree crowns in 3D radiative transfer models: impact on simulated open-canopy reflectances. Remote Sens. Environ. 142 (2014), 155–175.
Widlowski, J.-L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger, C., Brennan, J., Busetto, L., Chelle, M., Ceccherini, G., Colombo, R., Côté, J.-F., Eenmäe, A., Essery, R., Gastellu-Etchegorry, J.-P., Gobron, N., Grau, E., Haverd, V., Homolová, L., Huang, H., Hunt, L., Kobayashi, H., Koetz, B., Kuusk, A., Kuusk, J., Lang, M., Lewis, P.E., Lovell, J.L., Malenovský, Z., Meroni, M., Morsdorf, F., Mõttus, M., Ni-Meister, W., Pinty, B., Rautiainen, M., Schlerf, M., Somers, B., Stuckens, J., Verstraete, M.M., Yang, W., Zhao, F., Zenone, T., The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens. Environ. 169 (2015), 418–437.
Wieser, M., Mandlburger, G., Hollaus, M., Otepka, J., Glira, P., Pfeifer, N., A case study of UAS borne laser scanning for measurement of tree stem diameter. Remote Sens., 9, 2017, 1154.
Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., de Tanago, J.G., Bartholomeus, H., Brede, B., Herold, M., Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sens. Environ. 196 (2017), 140–153.
Wilkes, P., Disney, M., Vicari, M.B., Calders, K., Burt, A., Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance Manag., 13, 2018, 10.
Wilkes, P., Shenkin, A., Disney, M., Malhi, Y., Boni Vicari, M., Rapid characterisation of fine scale branch structure using terrestrial LiDAR. Presented at the 4th Scientific Meeting on TLS in Forest Ecology, 2019.
Willim, K., Stiers, M., Annighöfer, P., Ammer, C., Ehbrecht, M., Kabal, M., Stillhard, J., Seidel, D., Assessing understory complexity in beech-dominated forests (Fagus sylvatica L.) in Central Europe—from managed to primary forests. Sensors, 19, 2019, 1684.
Wilson, J.W., Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol. 58 (1959), 92–99.
Wu, D., Johansen, K., Phinn, S., Robson, A., Suitability of airborne and terrestrial laser scanning for mapping tree crop structural metrics for improved orchard management. Remote Sens., 12, 2020, 1647.
Wu, D., Johansen, K., Phinn, S., Robson, A., Tu, Y.-H., Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns. Int. J. Appl. Earth Obs. Geoinf., 89, 2020, 102091.
Xi, Z., Hopkinson, C., Chasmer, L., Filtering stems and branches from terrestrial laser scanning point clouds using deep 3-D fully convolutional networks. Remote Sens., 10, 2018, 1215.
Yang, B., Lee, D.K., Heo, H.K., Biging, G., The effects of tree characteristics on rainfall interception in urban areas. Landsc. Ecol. Eng. 15 (2019), 289–296.
Yrttimaa, T., Saarinen, N., Kankare, V., Liang, X., Hyyppä, J., Holopainen, M., Vastaranta, M., Investigating the feasibility of multi-scan terrestrial laser scanning to characterize tree communities in southern boreal forests. Remote Sens., 11, 2019, 1423.
Yrttimaa, T., Saarinen, N., Luoma, V., Tanhuanpää, T., Kankare, V., Liang, X., Hyyppä, J., Holopainen, M., Vastaranta, M., Detecting and characterizing downed dead wood using terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 151 (2019), 76–90.
Yrttimaa, T., Saarinen, N., Kankare, V., Viljanen, N., Hynynen, J., Huuskonen, S., Holopainen, M., Hyyppä, J., Honkavaara, E., Vastaranta, M., Multisensorial close-range sensing generates benefits for characterization of managed scots Pine (Pinus sylvestris L.) Stands. ISPRS Int. J. Geo-Informa., 9, 2020, 309.
Yu, X., Liang, X., Hyyppä, J., Kankare, V., Vastaranta, M., Holopainen, M., Stem biomass estimation based on stem reconstruction from terrestrial laser scanning point clouds. Remote Sens. Lett. 4 (2013), 344–353.
Yun, T., An, F., Li, W., Sun, Y., Cao, L., Xue, L., A novel approach for retrieving tree leaf area from ground-based LiDAR. Remote Sens., 8, 2016, 942.
Zhou, Y., Tuzel, O., VoxelNet: end-to-end learning for point cloud based 3D object detection. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 4490–4499.
Zhu, X., Wang, T., Darvishzadeh, R., Skidmore, A.K., Niemann, K.O., 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction. ISPRS J. Photogramm. Remote Sens. 110 (2015), 14–23.
Zhu, X., Skidmore, A.K., Darvishzadeh, R., Olaf Niemann, K., Liu, J., Shi, Y., Wang, T., Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest. Int. J. Appl. Earth Obs. Geoinf. 64 (2018), 43–50.
Zhu, X., Skidmore, A.K., Wang, T., Liu, J., Darvishzadeh, R., Shi, Y., Premier, J., Heurich, M., Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning. Agric. For. Meteorol. 263 (2018), 276–286.
Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M., Biomass and stem volume equations for tree species in Europe. Silva Fennica Monogr., 4, 2005.