[en] Fruits and vegetables contain a large number of volatile compounds, which
constitute their unique odor and contribute to their flavor. However, there
are only a few key aroma compounds that contribute to the special aroma.
How to screen and identify key aroma compounds from many non-contributing and low-contributing compounds has always been the focus and
difficulty of the research on the flavor quality of fruits and vegetables.
However, it could be better solved via molecular sensory science technology.
This review summarizes the application of molecular sensory science technology in fruits and vegetables flavor in recent years, and elaborates the
analysis methods related to molecular sensory science, such as sensory
evaluation, GC×GC-MS,GC-IMS, GC-O, OAV, omission test and recombination
experiment. And some problems existing in current molecular sensory
science technology are discussed and prospected.
Disciplines :
Chemistry Food science
Author, co-author :
Gou, Min
Bi, Jinfeng
Chen, Qinqin
Wu, Xinye
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Qioa, Yening
Language :
English
Title :
Advances and Perspectives in Fruits and Vegetables Flavor Based on Molecular Sensory Science
Publication date :
2023
Journal title :
Food Reviews International
ISSN :
8755-9129
eISSN :
1525-6103
Publisher :
Marcel Dekker, New York, United States - New York
Volume :
39
Issue :
6
Pages :
3066-3079
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NSCF - National Natural Science Foundation of China CAAS - Chinese Academy of Agricultural Sciences
Funding text :
The funding support of National Natural Science Foundation of China (No.31801564), the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2020-IFST-04) and Central Publicinterest Scientific Institution Basal Research Fund (No. S2020JBKY-17) are greatly appreciated by the authors.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Martins, S. I. F. S.; Jongen, W. M. F.; Boekel, M. A. J. S. V. A Review of Maillard Reaction in Food and Implications to Kinetic Modelling. Trends Food Sci. Technol. 2001, 11. 364–373. DOI: 10.2307/3717028.
Zellner, B. D.; Dugo, P.; Dugo, G.; Mondello, L. Gas Chromatography–Olfactometry in Food Flavour Analysis. J. Chromatogr. A. 2008, 1186 (1–2), 123–143. DOI: 10.1016/j.chroma.2007.09.006.
Ito, Y.; Kubota, K. Sensory Evaluation of the Synergism among Odorants Present in Concentrations below Their Odor Threshold in a Chinese Jasmine Green Tea Infusion. Mol. Nutr. Food Res. 2005, 49 (1), 61–68. DOI: 10.1002/mnfr.200400021.
Elss, S.; Kleinhenz, S.; Schreier, P. Odor and Taste Thresholds of Potential Carry-over/off-Flavor Compounds in Orange and Apple Juice. LWT - Food Sci. Technol. 2007, 40 (10), 1826–1831. DOI: 10.1016/j.lwt.2006.12.010.
Luo, D.; Pang, X.; Xu, X.; Bi, S.; Zhang, W.; Wu, J. Identification of Cooked Off-Flavor Components and Analysis of Their Formation Mechanisms in Melon Juice during Thermal Processing. J. Agric. Food Chem. 2018, 66 (22), 5612–5620. DOI: 10.1021/acs.jafc.8b01019.
Meethaworn, K.; Luckanatinwong, V.; Zhang, B.; Chen, K.; Siriphanich, J. Off-Flavor Caused by Cold Storage Is Related to Induced Activity of LOX and HPL in Young Coconut Fruit. Lwt. 2019, 114 (April), 108329. DOI: 10.1016/j.lwt.2019.108329.
Pan, X.; Zhang, W.; Lao, F.; Mi, R.; Liao, X.; Luo, D.; Wu, J. Isolation and Identification of Putative Precursors of the Volatile Sulfur Compounds and Their Inhibition Methods in Heat-Sterilized Melon Juices. Food Chem. October 2020, 343, 128459. DOI: 10.1016/j.foodchem.2020.128459.
Steinhaus, P.; Schieberle, P. Characterization of the Key Aroma Compounds in Soy Sauce Using Approaches of Molecular Sensory Science. J. Agric. Food Chem. 2007, 55 (15), 6262–6269. DOI: 10.1021/jf0709092.
Zhu, J.; Lv, F. Development of Study on Sensory Evaluation in Food. China Condiment. 2009, 34 (5), 29–31.
Liu, D.; Li, D.; Tan, Y.; Liu, H. Methodology and Application of Sensory Evaluation Technology in Food Science. Food Sci. 2016, 37 (5), 254. DOI: 10.7506/spkx1002-6630-201605044.
Morris, W. L.; Shepherd, T.; Verrall, S. R.; McNicol, J. W.; Taylor, M. A. Relationships between Volatile and Non-Volatile Metabolites and Attributes of Processed Potato Flavour. Phytochemistry. 2010, 71 (14–15), 1765–1773. DOI: 10.1016/j.phytochem.2010.07.003.
Vatthanakul, S.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Wilkinson, B. Gold Kiwifruit Leather Product Development Using Quality Function Deployment Approach. Food Qual. Prefer. 2010, 21 (3), 339–345. DOI: 10.1016/j.foodqual.2009.06.002.
Krumbein, A.; Peters, P.; Brückner, B. Flavour Compounds and a Quantitative Descriptive Analysis of Tomatoes (Lycopersicon Esculentum Mill.) Of Different Cultivars in Short-Term Storage. Postharvest Biol. Technol. 2004, 32 (1), 15–28. DOI: 10.1016/j.postharvbio.2003.10.004.
Laboissière, L. H. E. S.; Deliza, R.; Barros-Marcellini, A. M.; Rosenthal, A.; Camargo, L. M. A. Q.; Junqueira, R. G. Effects of High Hydrostatic Pressure (HHP) on Sensory Characteristics of Yellow Passion Fruit Juice. Innov. Food Sci. Emerg. Technol. 2007, 8 (4), 469–477. DOI: 10.1016/j.ifset.2007.04.001.
Zhai, X.; Granvogl, M. Characterization of the Key Aroma Compounds in Two Differently Dried Toona Sinensis (A. Juss.) Roem. By Means of the Molecular Sensory Science Concept. J. Agric. Food Chem. 2019, 67 (35), 9885–9894. DOI: 10.1021/acs.jafc.8b06656.
Guo, J.; Yue, T.; Yuan, Y.; Sun, N.; Liu, P. Characterization of Volatile and Sensory Profiles of Apple Juices to Trace Fruit Origins and Investigation of the Relationship between the Aroma Properties and Volatile Constituents. LWT - Food Sci. Technol. 2020, 124 (February), 109203. DOI: 10.1016/j.lwt.2020.109203.
Bicas, J. L.; Molina, G.; Dionísio, A. P.; Barros, F. F. C.; Wagner, R.; Maróstica, M. R.; Pastore, G. M. Volatile Constituents of Exotic Fruits from Brazil. Food Res. Int. 2011, 44 (7), 1843–1855. DOI: 10.1016/j.foodres.2011.01.012.
Xu, X.; Xu, R.; Jia, Q.; Feng, T.; Huang, Q.; Ho, C. T.; Song, S. Identification of Dihydro-β-Ionone as a Key Aroma Compound in Addition to C8 Ketones and Alcohols in Volvariella Volvacea Mushroom. Food Chem. May 2019, 293, 333–339. DOI: 10.1016/j.foodchem.2019.05.004.
Zhang, H.; Pu, D.; Sun, B.; Ren, F.; Zhang, Y.; Characterization, C. H. Comparison of Key Aroma Compounds in Raw and Dry Porcini Mushroom (Boletus Edulis) by Aroma Extract Dilution Analysis, Quantitation and Aroma Recombination Experiments. Food Chem. 2018, 258, 260–268. DOI: 10.1016/j.foodchem.2018.03.056.
Du, X.; Song, M.; Baldwin, E.; Rouseff, R. Identification of Sulphur Volatiles and GC-Olfactometry Aroma Profiling in Two Fresh Tomato Cultivars. Food Chem. 2015, 171, 306–314. DOI: 10.1016/j.foodchem.2014.09.013.
Yang, C.; Wang, Y.; Wu, B.; Fang, J.; Li, S. Volatile Compounds Evolution of Three Table Grapes with Different Flavour during and after Maturation. Food Chem. 2011, 128 (4), 823–830. DOI: 10.1016/j.foodchem.2010.11.029.
Conde-Martínez, N.; Sinuco, D. C.; Osorio, C. Chemical Studies on Curuba (Passiflora Mollissima (Kunth) L. H. Bailey) Fruit Flavour. Food Chem. 2014, October 2012, 157, 356–363. DOI: 10.1016/j.foodchem.2014.02.056.
Kim, M. K.; Lee, Y. Y.; Lee, K. G.; Jang, H. W. Instrumental Volatile Flavor Analysis of Omija (Schisandra Chinesis Baillon) Using Headspace Stir-Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry and Its Relationship to Human Sensory Perceptions. Food Res. Int. 2019, August 2018, 120, 650–655. DOI: 10.1016/j.foodres.2018.11.022.
Du, X. F.; Kurnianta, A.; McDaniel, M.; Finn, C. E.; Qian, M. C. Flavour Profiling of “Marion” and Thornless Blackberries by Instrumental and Sensory Analysis. Food Chem. 2010, 121 (4), 1080–1088. DOI: 10.1016/j.foodchem.2010.01.053.
Zhang, W.; Lao, F.; Bi, S.; Pan, X.; Pang, X.; Hu, X.; Liao, X.; Wu, J. Insights into the Major Aroma-Active Compounds in Clear Red Raspberry Juice (Rubus Idaeus L. Cv. Heritage) by Molecular Sensory Science Approaches. Food Chem. 2021, 336 (17), 127721. DOI: 10.1016/j.foodchem.2020.127721.
Murray, J. M.; Delahunty, C. M.; Baxter, I. A. Descriptive Sensory Analysis: Past, Present and Future. Food Res. Int. 2001, 34 (6), 461–471. DOI: 10.1016/S0963-9969(01)00070-9.
Dijksterhuis, G. B.; Byrne, D. V. Does the Mind Reflect the Mouth? Sensory Profiling and the Future. Crit. Rev. Food Sci. Nutr. 2005, 45 (7–8), 527–534. DOI: 10.1080/10408690590907660.
Gross, J. H.; Todd, P. J. Mass Spectrometry: A Textbook. Phys. Today. 2005, 58 (6), 59–60.
Verma, D. K.; Srivastav, P. P. A Paradigm of Volatile Aroma Compounds in Rice and Their Product with Extraction and Identification Methods: A Comprehensive Review. Food Res. Int. 2020, December 2019, 130, 108924. DOI: 10.1016/j.foodres.2019.108924.
Dou, T. X.; Shi, J. F.; Li, Y.; Bi, F. C.; Gao, H. J.; Hu, C. H.; Li, C. Y.; Yang, Q. S.; Deng, G. M.; Sheng, O., et al. Influence of Harvest Season on Volatile Aroma Constituents of Two Banana Cultivars by Electronic Nose and HS-SPME Coupled with GC-MS. Sci. Hortic. (Amsterdam). 2019 November, 2020 (265), 109214. doi: 10.1016/j.scienta.2020.109214.
Zhang, H.; Pu, D.; Sun, B.; Ren, F.; Zhang, Y.; Characterization, C. H. Comparison of Key Aroma Compounds in Raw and Dry Porcini Mushroom (Boletus Edulis) by Aroma Extract Dilution Analysis, Quantitation and Aroma Recombination Experiments. Food Chem. 2018, November 2017, 258, 260–268. DOI: 10.1016/j.foodchem.2018.03.056.
Chigwedere, C. M.; Tadele, W. W.; Yi, J.; Wibowo, S.; Kebede, B. T.; Van Loey, A. M.; Grauwet, T.; Hendrickx, M. E. Insight into the Evolution of Flavor Compounds during Cooking of Common Beans Utilizing a Headspace Untargeted Fingerprinting Approach. Food Chem. 2019, June 2018, 275, 224–238. DOI: 10.1016/j.foodchem.2018.09.080.
Song, J.; Chen, Q.; Bi, J.; Meng, X.; Wu, X.; Qiao, Y.; Lyu, Y. GC/MS Coupled with MOS e-Nose and Flash GC e-Nose for Volatile Characterization of Chinese Jujubes as Affected by Different Drying Methods. Food Chem. 2020, 331, 127201. DOI: 10.1016/j.foodchem.2020.127201.
Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. The Power of Ion Mobility-Mass Spectrometry for Structural Characterization and the Study of Conformational Dynamics. Nat. Chem. 2014, 6 (4), 281–294. DOI: 10.1038/nchem.1889.
Jünger, M.; Vautz, W.; Kuhns, M.; Hofmann, L.; Ulbricht, S.; Baumbach, J. I.; Quintel, M.; Perl, T. Ion Mobility Spectrometry for Microbial Volatile Organic Compounds: A New Identification Tool for Human Pathogenic Bacteria. Appl. Microbiol. Biotechnol. 2012, 93 (6), 2603–2614. DOI: 10.1007/s00253-012-3924-4.
Garrido-Delgado, R.; Arce, L.; V; Pardo, G. A.; Marco, A.; Valcárcel, S. M. Direct Coupling of a Gas–Liquid Separator to an Ion Mobility Spectrometer for the Classification of Different White Wines Using Chemometrics Tools. Talanta. 2011, 84 (2), 0–479. DOI: 10.1016/j.talanta.2011.01.044.
Rajapakse, M. Y.; Stone, J. A.; Eiceman, G. A. Decomposition Kinetics of Nitroglycerine·Cl–(G) in Air at Ambient Pressure with a Tandem Ion Mobility Spectrometer. J. Phys. Chem. A. 2014, 118 (15), 2683–2692. DOI: 10.1021/jp412444b.
Li, Q.; Li, R.; Cao, G.; Wu, X.; Yang, G.; Cai, B.; Cheng, B.; Mao, W. Direct Differentiation of Herbal Medicine for Volatile Components by a Multicapillary Column with Ion Mobility Spectrometry Method. J. Sep. Sci. 2015, 38 (18), 3205–3208. DOI: 10.1002/jssc.201500402.
Wang, S.; Chen, H.; Sun, B. Recent Progress in Food Flavor Analysis Using Gas Chromatography–Ion Mobility Spectrometry (GC–IMS). Food Chem. 2020, December 2019, 315, 126158. DOI: 10.1016/j.foodchem.2019.126158.
Li, H.; Jiang, D.; Liu, W.; Yang, Y.; Zhang, Y.; Jin, C.; Sun, S. Comparison of Fermentation Behaviors and Properties of Raspberry Wines by Spontaneous and Controlled Alcoholic Fermentations. Food Res. Int. 2020, October 2019, 128, 108801. DOI: 10.1016/j.foodres.2019.108801.
Xiao, D.; Zhang, D.; Huang, X.; Yang, J. Aromatic Volatiles in Lentinula Edodes Determined by Gas Chromatography Ion Mobility Spectroscopy. Fujian J. Agric. Sci. 2018, 33 (3), 309–312.
Li, Y.; Gong, X.; Ren, F.; Cheng, Z.; Zhou, W.; Li, J. Flavor Changes of Annona Squamosa L. Under Different Storage Conditions by GC-IMS. Sci. Technol. Food Ind. 2019, 40 (18), 263–267.
Sun, X.; Gu, D.; Fu, Q.; Gao, L.; Shi, C.; Zhang, R.; Qiao, X. Content Variations in Compositions and Volatile Component in Jujube Fruits during the Blacking Process. Food Sci. Nutr. 2019, 7 (4), 1387–1395. DOI: 10.1002/fsn3.973.
Tang, Z. S.; Zeng, X. A.; Brennan, M. A.; Han, Z.; Niu, D.; Huo, Y. Characterization of Aroma Profile and Characteristic Aromas during Lychee Wine Fermentation. J. Food Process. Preserv. 2019, 43 (8), 1–14. DOI: 10.1111/jfpp.14003.
Wang, X.; Guo, M.; Song, H.; Meng, Q.; Guan, X. Characterization of Key Odor-Active Compounds in Commercial High-Salt Liquid-State Soy Sauce by Switchable GC/GC × GC−olfactometry−MS and Sensory Evaluation. Food Chem. 2020, 342, 128224. DOI: 10.1016/j.foodchem.2020.128224.
Phillips, J. B.; Beens, J. Comprehensive Two-Dimensional Gas Chromatography: A Hyphenated Method with Strong Coupling between the Two Dimensions. J. Chromatogr. A. 1999, 856 (1–2), 331–347. DOI: 10.1016/S0021-9673(99)00815-8.
Tsikas, D.; Zoerner, A. A. Analysis of Eicosanoids by LC-MS/MS and GC-MS/MS: A Historical Retrospect and A Discussion. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 79–88. DOI: 10.1016/j.jchromb.2014.03.017.
Nicolli, K. P.; Biasoto, A. C. T.; Souza-Silva, É. A.; Guerra, C. C.; Dos Santos, H. P.; Welke, J. E.; Zini, C. A. Sensory, Olfactometry and Comprehensive Two-Dimensional Gas Chromatography Analyses as Appropriate Tools to Characterize the Effects of Vine Management on Wine Aroma. Food Chem. 2018, June 2017, 243, 103–117. DOI: 10.1016/j.foodchem.2017.09.078.
Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Characterization of Volatile Sulfur Compounds in Soy Sauce Aroma Type Baijiu and Changes during Fermentation by GC × GC-TOFMS, Organoleptic Impact Evaluation, and Multivariate Data Analysis. Food Res. Int. 2020, September 2019, 131, 109043. DOI: 10.1016/j.foodres.2020.109043.
Wu, S.; Yang, J.; Dong, H.; Liu, Q.; Li, X.; Zeng, X.; Bai, W. Key Aroma Compounds of Chinese Dry-Cured Spanish Mackerel (Scomberomorus Niphonius) and Their Potential Metabolic Mechanisms. Food Chem. 2021, September 2020, 342, 128381. DOI: 10.1016/j.foodchem.2020.128381.
Boeswetter, A. R.; Scherf, K. A.; Schieberle, P.; Koehler, P. Identification of the Key Aroma Compounds in Gluten-Free Rice Bread. J. Agric. Food Chem. 2019, 67 (10), 2963–2972. DOI: 10.1021/acs.jafc.9b00074.
Braga, S.; Oliveira, L. F.; Hashimoto, J. C.; Sato, M.; Priscilla, E.; Poppi, R. J., and Fabio, A. Study of Volatile Profile in Cocoa Nibs, Cocoa Liquor and Chocolate on Production Process Using GC × GC-QMS. Microchem. J. 2018, 41, S0026265X18304041
Zhu, J. C.; Niu, Y.; Xiao, Z. B. Characterization of the Key Aroma Compounds in Laoshan Green Teas by Application of Odour Activity Value (OAV), Gas Chromatography-Mass Spectrometry-Olfactometry (GC-MS-O) and Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry (GC × GC-QMS. Food Chem. 2021, May 2020, 339, 128136. DOI: 10.1016/j.foodchem.2020.128136.
Ntlhokwe, G.; Muller, M.; Joubert; Elizabeth, T., and Andreas, G. J. Detailed Qualitative Analysis of Honeybush Tea (Cyclopia Spp.) Volatiles by Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry and Relation with Sensory Data. J. Chromatogr. A Incl. Electrophor. Other Sep. Methods. 2018, 1536.
Zhu, Y.; Lv, H. P.; Da I, W.-D.; Guo, L.; Tan, J. F.; Zhang, Y.; Yu, F. L.; Shao, C. Y.; Peng, Q. H.; Lin, Z. Separation of Aroma Components in Xihu Longjing Tea Using Simultaneous Distillation Extraction with Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Sep. Purif. Technol. 2016, 164, 146–154. DOI: 10.1016/j.seppur.2016.03.028.
Aith Barbará, J.; Primieri Nicolli, K.; Souza-Silva, É. A.; Biasoto, A., C. T.; Welke, J. E.; Alcaraz Zini, C. Volatile Profile and Aroma Potential of Tropical Syrah Wines Elaborated in Different Maturation and Maceration Times Using Comprehensive Two-Dimensional Gas Chromatography and Olfactometry. Food Chem. 2020, May 2019, 308, 125552. DOI: 10.1016/j.foodchem.2019.125552.
Capobiango, M.; Mastello, R. B.; Chin, S. T.; Oliveira, E. D. S.; Cardeal, Z. D. L.; Marriott, P. J. Identification of Aroma-Active Volatiles in Banana Terra Spirit Using Multidimensional Gas Chromatography with Simultaneous Mass Spectrometry and Olfactometry Detection. J. Chromatogr. A. 2015, 1388, 227–235. DOI: 10.1016/j.chroma.2015.02.029.
Plutowska, B.; Wardencki, W. Application of Gas Chromatography-Olfactometry (GC-O) in Analysis and Quality Assessment of Alcoholic Beverages - A Review. Food Chem. 2008, 107 (1), 449–463. DOI: 10.1016/j.foodchem.2007.08.058.
Zhang, Z.; Li, G. A Review of Advances and New Developments in the Analysis of Biological Volatile Organic Compounds. Microchem. J. 2010, 95 (2), 127–139. DOI: 10.1016/j.microc.2009.12.017.
Song, H.; Liu, J. GC-O-MS Technique and Its Applications in Food Flavor Analysis. Food Res. Int. July 2018, 114, 187–198. DOI: 10.1016/j.foodres.2018.07.037.
Cheng, H.; Chen, J.; Zhou, X.; Chen, R.; Liu, D.; Ye, X. Advances in Identification and Biosynthetic Pathwayof Key Aroma in Fruits. J. Chinese Inst. Food Sci. Technol. 2016, 16 (1), 211–218.
d’Acampora Zellner, B.; Dugo, P.; Dugo, G.; Mondello, L. Gas Chromatography-Olfactometry in Food Flavour Analysis. J. Chromatogr. A. 2008, 1186 (1–2), 123–143. DOI: 10.1016/j.chroma.2007.09.006.
Liu, Y.; He, C.; Song, H. Comparison of Fresh Watermelon Juice Aroma Characteristics of Five Varieties Based on Gas Chromatography-Olfactometry-Mass Spectrometry. Food Res. Int. 2018, 107 (11), 119–129. DOI: 10.1016/j.foodres.2018.02.022.
Sonmezdag, A. S.; Kelebek, H.; Selli, S. Characterization of Aroma‐Active Compounds, Phenolics, and Antioxidant Properties in Fresh and Fermented Capers (Capparis Spinosa) by GC‐MS‐Olfactometry and LC‐DAD‐ESI‐MS/MS. J. Food Sci. 2019, 84 (9), 2449–2457. DOI: 10.1111/1750-3841.14777.
Cheng, H.; Qin, Z. H.; Guo, X. F.; Hu, X. S.; Wu, J. H. Geographical Origin Identification of Propolis Using GC-MS and Electronic Nose Combined with Principal Component Analysis. Food Res. Int. 2013, 51 (2), 813–822. DOI: 10.1016/j.foodres.2013.01.053.
Lignou, S.; Parker, J. K.; Oruna-Concha, M. J.; Mottram, D. S. Flavour Profiles of Three Novel Acidic Varieties of Muskmelon (Cucumis Melo L.). Food Chem. 2013, 139 (1–4), 1152–1160. DOI: 10.1016/j.foodchem.2013.01.068.
Kraujalyte, V.; Leitner, E.; Venskutonis, P. R. Characterization of Aroniamelanocarpa Volatiles by Headspace-Solid-Phase Microextraction (HS-SPME), Simultaneous Distillation/Extraction (SDE), and Gas Chromatography-Olfactometry (GC-O) Methods. J. Agric. Food Chem. 2013, 61 (20), 4728–4736. DOI: 10.1021/jf400152x.
Su, M. S.; Chien, P. J. Aroma Impact Components of Rabbiteye Blueberry (Vaccinium Ashei) Vinegars. Food Chem. 2010, 119 (3), 923–928. DOI: 10.1016/j.foodchem.2009.07.053.
Cheng, H.; Chen, J.; Chen, S.; Wu, D.; Liu, D.; Ye, X. Characterization of Aroma-Active Volatiles in Three Chinese Bayberry (Myrica Rubra) Cultivars Using GC-MS-Olfactometry and an Electronic Nose Combined with Principal Component Analysis. Food Res. Int. 2015, 72, 8–15. DOI: 10.1016/j.foodres.2015.03.006.
Amanpour, A.; Guclu, G.; Kelebek, H.; Selli, S. Characterization of Key Aroma Compounds in Fresh and Roasted Terebinth Fruits Using Aroma Extract Dilution Analysis and GC–MS-Olfactometry. Microchem. J. 2019, August 2018, 145, 96–104. DOI: 10.1016/j.microc.2018.10.024.
Zhang, W.; Dong, P.; Lao, F.; Liu, J.; Liao, X.; Wu, J. Characterization of the Major Aroma-Active Compounds in Keitt Mango Juice: Comparison among Fresh, Pasteurization and High Hydrostatic Pressure Processing Juices. Food Chem. 2019, 289 (17), 215–222. DOI: 10.1016/j.foodchem.2019.03.064.
An, K.; Liu, H.; Fu, M.; Qian, M. C.; Yu, Y.; Wu, J.; Xiao, G.; Xu, Y. Identification of the Cooked Off-Flavor in Heat-Sterilized Lychee (Litchi Chinensis Sonn.) Juice by Means of Molecular Sensory Science. Food Chem. July 2019, 301, 125282. DOI: 10.1016/j.foodchem.2019.125282.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.