scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, second ed. Birkhäuser Verlag, Basel (2008)
Bedrossian, J., Kim, I.C.: Global existence and finite time blow-up for critical Patlak-Keller-Segel models with inhomogeneous diffusion. SIAM J. Math. Anal. 45, 934–964 (2013). doi:10.1137/120882731
Blanchet, A.: On the parabolic-elliptic patlak-keller-segel system in dimension 2 and higher. Séminaire équations aux dérivées partielles (2014)
Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46, 691–721 (2008). doi:10.1137/070683337
Blanchet, A., Carrillo, J.A., Laurençot, P.: Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differ. Equ. 35, 133–168 (2009). doi:10.1007/s00526-008-0200-7
Calvez, V., Carrillo, J., Hoffmann, F.: In preparation
Calvez, V., Carrillo, J.A.: Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities. Proc. Am. Math. Soc. 140, 3515–3530 (2012). doi:10.1090/S0002-9939-2012-11306-1
Calvez, V., Gallouët, T.O.: Particle approximation of the one dimensional keller-segel equation, stability and rigidity of the blow-up. DCDS-A (2015) (to appear)
Calvez, V., Perthame, B., Sharifi tabar, M.: Modified Keller-Segel system and critical mass for the log interaction kernel. In: Stochastic analysis and partial differential equations, Contemporary Mathematics, vol. 429, pp. 45–62. American Mathematical Society, Providence, RI (2007). doi:10.1090/conm/429/08229
Campos, J.F., Dolbeault, J.: Asymptotic estimates for the Parabolic-Elliptic Keller-Segel model in the plane. Commun. Partial Differ. Equ. 39, 806–841 (2014)
Dolbeault, J., Toscani, G.: Improved interpolation inequalities, relative entropy and fast diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 917–934 (2013). doi:10.1016/j.anihpc.2012.12.004
Dolbeault, J., Toscani, G.: Best matching Barenblatt profiles are delayed. J. Phys. A 48, 065206 (2015). doi:10.1088/1751-8113/48/6/065206
Gosse, L., Toscani, G.: Lagrangian numerical approximations to one-dimensional convolution-diffusion equations. SIAM J. Sci. Comput. 28, 1203–1227 (2006). doi:10.1137/050628015
Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009). doi:10.1007/s00285-008-0201-3
Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998). doi:10.1137/S0036141096303359
Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (1997)
McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997). doi:10.1006/aima.1997.1634
Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001). doi:10.1081/PDE-100002243
Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate keller-segel systems. Differ. Integral Equ. 19, 841–876 (2006)
Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003). doi:10.1007/b12016
Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009). doi:10.1007/978-3-540-71050-9
Yao, Y.: Asymptotic behavior for critical Patlak-Keller-Segel model and a repulsive-attractive aggregation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 81–101 (2014). doi:10.1016/j.anihpc.2013.02.002
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.