Sukhov, A.; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, Nürnberg, 90429, Germany
Ziegler, S.; Institute for Theoretical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
Xie, Q.; Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, Netherlands
Trosman, O.; Institute for Theoretical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
Pande, J.; Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel
Grosjean, Galien ; Université de Liège - ULiège > Département de physique > Département de physique
Hubert, Maxime
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Smith, A.-S.; Institute for Theoretical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
Harting, J.; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, Nürnberg, 90429, Germany, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, Netherlands
Language :
English
Title :
Optimal motion of triangular magnetocapillary swimmers
Publication date :
2019
Journal title :
Journal of Chemical Physics
ISSN :
0021-9606
eISSN :
1089-7690
Publisher :
American Institute of Physics Inc.
Volume :
151
Issue :
12
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
DFG - Deutsche Forschungsgemeinschaft Sociedade Portuguesa de Pediatria
E. Lauga and T. Powers, "The hydrodynamics of swimming microorganisms," Rep. Prog. Phys. 72, 096601 (2009). 10.1088/0034-4885/72/9/096601
J. Elgeti, R. G. Winkler, and G. Gompper, "Physics of microswimmers-Single particle motion and collective behavior: A review," Rep. Prog. Phys. 78, 056601 (2015). 10.1088/0034-4885/78/5/056601
E. M. Purcell, "Life at low Reynolds number," Am. J. Mod. Phys. 45, 3-11 (1977). 10.1119/1.10903
J. E. Avron, O. Kenneth, and D. H. Oaknin, "Pushmepullyou: An efficient micro-swimmer," New J. Phys. 7, 234 (2005); e-print arXiv:0501049 [math-ph]. 10.1088/1367-2630/7/1/234
M. T. Downton and H. Stark, "Simulation of a model microswimmer," J. Phys.: Condens. Matter 21, 204101 (2009). 10.1088/0953-8984/21/20/204101
A. Najafi and R. Golestanian, "Simple swimmer at low Reynolds number: Three linked spheres," Phys. Rev. E 69, 062901 (2004). 10.1103/physreve.69.062901
R. Golestanian and A. Ajdari, "Analytic results for the three-sphere swimmer at low Reynolds number," Phys. Rev. E 77, 036308 (2008). 10.1103/physreve.77.036308
J. Pande and A.-S. Smith, "Forces and shapes as determinants of micro-swimming: Effect on synchronisation and the utilisation of drag," Soft Matter 11, 2364-2371 (2015). 10.1039/c4sm02611j
A. Daddi-Moussa-Ider, M. Lisicki, A. J. T. M. Mathijssen, C. Hoell, S. Goh, J. Bławzdziewicz, A. M. Menzel, and H. Löwen, "State diagram of a three-sphere microswimmer in a channel," J. Phys.: Condens. Matter 30, 254004 (2018). 10.1088/1361-648x/aac470
C. M. Pooley, G. P. Alexander, and J. M. Yeomans, "Hydrodynamic interaction between two swimmers at low Reynolds number," Phys. Rev. Lett. 99, 228103 (2007). 10.1103/physrevlett.99.228103
R. Zargar, A. Najafi, and M. Miri, "Three-sphere low-Reynolds-number swimmer near a wall," Phys. Rev. E 80, 026308 (2009). 10.1103/physreve.80.026308
G. Grosjean, M. Hubert, G. Lagubeau, and N. Vandewalle, "Realization of the Najafi-Golestanian microswimmer," Phys. Rev. E 94, 021101 (2016). 10.1103/physreve.94.021101
G. Lagubeau, G. Grosjean, A. Darras, G. Lumay, M. Hubert, and N. Vandewalle, "Statics and dynamics of magnetocapillary bonds," Phys. Rev. E 93, 053117 (2016). 10.1103/physreve.93.053117
B. U. Felderhof, "The swimming of animalcules," Phys. Fluids 18, 063101 (2006). 10.1063/1.2204633
K. Pickl, J. Pande, H. Koestler, U. Ruede, and A. S. Smith, "Lattice Boltzmann simulations of the bead-spring microswimmer with a responsive stroke-From an individual to swarms," J. Phys.: Condens. Matter 29, 124001 (2017). 10.1088/1361-648x/aa5a40
J. Pande, L. Merchant, T. Krüger, J. Harting, and A.-S. Smith, "Setting the pace of microswimmers: When increasing viscosity speeds up self-propulsion," New J. Phys. 19, 053024 (2017). 10.1088/1367-2630/aa6e3a
J. Pande, L. Merchant, T. Krüger, J. Harting, and A.-S. Smith, "Effect of body deformability on microswimming," Soft Matter 13, 3984-3993 (2017). 10.1039/c7sm00181a
G. Grosjean, G. Lagubeau, A. Darras, M. Hubert, G. Lumay, and N. Vandewalle, "Remote control of self-assembled microswimmers," Sci. Rep. 5, 16035 (2015). 10.1038/srep16035
M. S. Rizvi, A. Farutin, and C. Misbah, "Three-bead steering microswimmers," Phys. Rev. E 97, 023102 (2018). 10.1103/physreve.97.023102
N. Küchler, H. Löwen, and A. M. Menzel, "Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields," Phys. Rev. E 93, 22610 (2016); e-print arXiv:1510.02325. 10.1103/physreve.93.022610
B. M. Friedrich and F. Jülicher, "Flagellar synchronization independent of hydrodynamic interactions," Phys. Rev. Lett. 109, 138102 (2012). 10.1103/physrevlett.109.138102
K. Polotzek and B. M. Friedrich, "A three-sphere swimmer for flagellar synchronization," New J. Phys. 15, 045005 (2013); e-print arXiv:1211.5981v3. 10.1088/1367-2630/15/4/045005
R. R. Bennett and R. Golestanian, "Emergent run-and-tumble behavior in a simple model of chlamydomonas with intrinsic noise," Phys. Rev. Lett. 110, 148102 (2013). 10.1103/physrevlett.110.148102
L. Jibuti, W. Zimmermann, S. Rafaï, and P. Peyla, "Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling," Phys. Rev. E 96, 52610 (2017); e-print arXiv:1412.3176. 10.1103/physreve.96.052610
R. Ledesma-Aguilar, H. Löwen, and J. M. Yeomans, "A circle swimmer at low Reynolds number," Eur. Phys. J. E 35, 70 (2012). 10.1140/epje/i2012-12070-5
D. J. Earl, C. M. Pooley, J. F. Ryder, I. Bredberg, and J. M. Yeomans, "Modeling microscopic swimmers at low Reynolds number," J. Chem. Phys. 126, 064703 (2007); e-print arXiv:0701511 [cond-mat]. 10.1063/1.2434160
R. Dreyfus, J. Baudry, and H. A. Stone, "Purcell's 'rotator': Mechanical rotation at low Reynolds number," Eur. Phys. J. B 47, 161-164 (2005). 10.1140/epjb/e2005-00302-5
V. Lobaskin, D. Lobaskin, and I. M. Kulić, "Brownian dynamics of a microswimmer," Eur. Phys. J.: Spec. Top. 157, 149-156 (2008); e-print arXiv:0709.0792. 10.1140/epjst/e2008-00637-7
K. Pickl, J. Götz, K. Iglberger, J. Pande, K. Mecke, A.-S. Smith, and U. Rüde, "All good things come in threes-Three beads learn to swim with lattice Boltzmann and a rigid body solver," J. Comput. Sci. 3, 374-387 (2012), advanced Computing Solutions for Health Care and Medicine. 10.1016/j.jocs.2012.04.009
M. Taghiloo and M. Miri, "Three-sphere magnetic swimmer in a shear flow," Phys. Rev. E 88, 023008 (2013). 10.1103/physreve.88.023008
S. Babel, H. Löwen, and A. Menzel, "Dynamics of a linear magnetic "microswimmer molecule"," Europhys. Lett. 113, 58003 (2016). 10.1209/0295-5075/113/58003
R. Chinomona, J. Lajeunesse, W. H. Mitchell, Y. Yao, and S. E. Spagnolie, "Stability and dynamics of magnetocapillary interactions," Soft Matter 11, 1828-1838 (2015). 10.1039/c4sm02189d
R. Benzi, S. Succi, and M. Vergassola, "The lattice Boltzmann equation: Theory and applications," Phys. Rep. 222, 145 (1992). 10.1016/0370-1573(92)90090-m
Y. H. Qian, D. D'Humières, and P. Lallemand, "Lattice BGK models for Navier-Stokes equation," Europhys. Lett. 17, 479-484 (1992). 10.1209/0295-5075/17/6/001
P. L. Bhatnagar, E. P. Gross, and M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Phys. Rev. 94, 511-525 (1954). 10.1103/physrev.94.511
X. Shan and H. Chen, "Lattice Boltzmann model for simulating flows with multiple phases and components," Phys. Rev. E 47, 1815-1819 (1993). 10.1103/physreve.47.1815
H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narváez, B. D. Jones, J. R. Williams, A. J. Valocchi, and J. Harting, "Multiphase lattice Boltzmann simulations for porous media applications," Comput. Geosci. 20, 777-805 (2016). 10.1007/s10596-015-9542-3
S. Frijters, F. Günther, and J. Harting, "Effects of nanoparticles and surfactant on droplets in shear flow," Soft Matter 8, 6542-6556 (2012). 10.1039/c2sm25209k
T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, "Numerical simulations of complex fluid-fluid interface dynamics," Eur. Phys. J.: Spec. Top. 222, 177-198 (2013). 10.1140/epjst/e2013-01834-y
F. Jansen and J. Harting, "From bijels to Pickering emulsions: A lattice Boltzmann study," Phys. Rev. E 83, 046707 (2011). 10.1103/physreve.83.046707
A. J. C. Ladd, "Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results," J. Fluid Mech. 271, 311-339 (1994). 10.1017/s0022112094001783
A. J. C. Ladd and R. Verberg, "Lattice-Boltzmann simulations of particle-fluid suspensions," J. Stat. Phys. 104, 1191-1251 (2001). 10.1023/a:1010414013942
F. Günther, S. Frijters, and J. Harting, "Timescales of emulsion formation caused by anisotropic particles," Soft Matter 10, 4977-4989 (2014). 10.1039/c3sm53186d
G. Lumay, N. Obara, F. Weyer, and N. Vandewalle, "Self-assembled magnetocapillary swimmers," Soft Matter 9, 2420-2425 (2013). 10.1039/c2sm27598h
Q. Xie, G. B. Davies, F. Günther, and J. Harting, "Tunable dipolar capillary deformations for magnetic Janus particles at fluid-fluid interfaces," Soft Matter 11, 3581-3588 (2015). 10.1039/c5sm00255a
Q. Xie, G. B. Davies, and J. Harting, "Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces," Soft Matter 12, 6566-6574 (2016). 10.1039/c6sm01201a
Q. Xie, G. B. Davies, and J. Harting, "Direct assembly of magnetic Janus particles at a droplet interface," ACS Nano 11, 11232-11239 (2017). 10.1021/acsnano.7b05550
C. Kunert, J. Harting, and O. I. Vinogradova, "Random-roughness hydrodynamic boundary conditions," Phys. Rev. Lett. 105, 016001 (2010). 10.1103/physrevlett.105.016001
C. Kunert and J. Harting, "Lattice Boltzmann simulations of liquid film drainage between smooth surfaces," IMA J. Appl. Math. 76, 761 (2011). 10.1093/imamat/hxr001
Colloidal Particles at Liquid Interfaces, 3rd ed., edited by B. P. Binks and T. S. Horozov (Cambridge University Press, New York, 2006).
D. Vella and L. Mahadevan, "The "Cheerios effect"," Am. J. Phys. 73, 817-825 (2005). 10.1119/1.1898523
D. Vella, D.-G. Lee, and H.-Y. Kim, "The load supported by small floating objects," Langmuir 22, 5979-5981 (2006). 10.1021/la060606m
Handbook of Mathematics, 3rd ed., edited by I. N. Bronshtein and K. A. Semendyayev (Springer, Berlin, 1998).
N. Vandewalle, L. Clermont, D. Terwagne, S. Dorbolo, E. Mersch, and G. Lumay, "Symmetry breaking in a few-body system with magnetocapillary interactions," Phys. Rev. E 85, 041402 (2012). 10.1103/physreve.85.041402
Particles at Fluid Interfaces and Membranes, edited by P. Kralchevsky and K. Nagayama (Elsevier, Amsterdam, 2001).
Low-Gravity Fluid Mechanics: Mathematical Theory of Capillary Phenomena, edited by A. Myshkis and V. G. Babskii (Springer, Berlin, 1987).
M. Hubert, "Cooperative dynamics and self-propulsion of active matter at interfaces," Ph.D. thesis, Université de Liège, Liège, 2018.
C. Oseen, "Ueber die Stokessche Formel und ueber eine verwandte Aufgabe in der Hydrodynamik," Ark. Mat. 6 (29), 1 (1910) (in German).