Environmental control of land-atmosphere CO2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types
Environmental control of land-atmosphere CO2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types
Publication date :
2020
Journal title :
Tellus. Series B, Chemical and Physical Meteorology
ISSN :
0280-6509
eISSN :
1600-0889
Publisher :
Taylor and Francis Ltd.
Volume :
72
Issue :
1
Pages :
1-25
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 730944 - RINGO - Readiness of ICOS for Necessities of integrated Global Observations
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., and co-authors. 2015. Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899. doi:10.1126/science.aaa1668
Allard, V., Ourcival, J. M., Rambal, S., Joffre, R., and Rocheteau, A., 2008. Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob. Change Biol. 14, 714–725. doi:10.1111/j.1365-2486.2008.01539.x
Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., and co-authors. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res 115, G00K02, doi:10.1029/2010JG001390
Aubinet, M., Hurdebise, Q., Chopin, H., Debacq, A., De Ligne, A., and co-authors. 2018. Inter-annual variability of Net Ecosystem Productivity for a temperate mixed forest: A predominance of carry-over effects? Agric. For. Meteorol. 262, 340–353. doi:10.1016/j.agrformet.2018.07.024
Baldocchi, D., 2008. Breathing” of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1. doi:10.1071/BT07151
Baldocchi, D., Chu, H., and Reichstein, M., 2018. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 249, 520–533. doi:10.1016/j.agrformet.2017.05.015
Baldocchi, D., Falge, E., and Wilson, K., 2001. A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agric. For. Meteorol. 107, 1–27. doi:10.1016/S0168-1923(00)00228-8
Béziat, P., Ceschia, E., and Dedieu, G., 2009. Carbon balance of a three crop succession over two cropland sites in South West France. Agric. For. Meteorol. 149, 1628–1645. doi:10.1016/j.agrformet.2009.05.004
Bréda, N., Huc, R., Granier, A., and Dreyer, E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644. doi:10.1051/forest:2006042
Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. doi:10.1023/A:1010933404324
Burba, G. G., Mc Dermitt, D. K., Grelle, A., Anderson, D. J., and Xu, L., 2008. Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Glob. Change Biol. 14, 1854–1876. doi:10.1111/j.1365-2486.2008.01606.x
Buysse, P., Bodson, B., Debacq, A., De Ligne, A., Heinesch, B., and co-authors. 2017. Carbon budget measurement over 12 years at a crop production site in the silty-loam region in Belgium. Agric. For. Meteorol 246, 241–255. doi:10.1016/j.agrformet.2017.07.004
Cabon, A., Mouillot, F., Lempereur, M., Ourcival, J.-M., Simioni, G., and co-authors. 2018. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 409, 333–342. doi:10.1016/j.foreco.2017.11.030
Chu, H., Baldocchi, D. D., John, R., Wolf, S., and Reichstein, M., 2017. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci. 122, 289–307. doi:10.1002/2016JG003576
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., and co-authors. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533. doi:10.1038/nature03972
Damour, G., Simonneau, T., Cochard, H., and Urban, L., 2010. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33, 1419–1438.
Dannoura, M., Maillard, P., Fresneau, C., Plain, C., Berveiller, D., and co-authors. 2011. In situ assessment of the velocity of carbon transfer by tracing 13 C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons. New Phytol. 190, 181–192. doi:10.1111/j.1469-8137.2010.03599.x
Delpierre, N., 2009. Etude du déterminisme des variations interannuelles des échanges carbonés entre les écosystèmes forestiers européens et l’atmosphère: une approche basée sur la modélisation des processus (thesis). Paris 11.
Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E., 2016. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210, 459–470. doi:10.1111/nph.13771
Delpierre, N., Soudani, K., François, C., Köstner, B., Pontailler, J.-Y., and co-authors. 2009. Exceptional carbon uptake in European forests during the warm spring of 2007: a data–model analysis. Glob. Change Biol. 15, 1455–1474. doi:10.1111/j.1365-2486.2008.01835.x
Delpierre, N., Soudani, K., François, C., Le Maire, G., Bernhofer, C., and co-authors. 2012. Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling. Agric. For. Meteorol. 154-155, 99–112. doi:10.1016/j.agrformet.2011.10.010
Dou, X., Chen, B., Black, T. A., Jassal, R. S., and Che, M., 2015. Impact of nitrogen fertilization on forest carbon sequestration and water loss in a chronosequence of three Douglas-Fir stands in the Pacific Northwest. Forests 6, 1897–1921. doi:10.3390/f6061897
Dou, X., Yang, Y., and Luo, J., 2018. Estimating forest carbon fluxes using machine learning techniques based on eddy covariance measurements. Sustainability 10, 203. doi:10.3390/su10010203
Etchanchu, J., Rivalland, V., Gascoin, S., Cros, J., Tallec, T., and co-authors. 2017. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France). Hydrol. Earth Syst. Sci. 21, 5693–5708. doi:10.5194/hess-21-5693-2017
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., and co-authors. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol 107, 43–69. doi:10.1016/S0168-1923(00)00225-2
Fares, S., Vargas, R., Detto, M., Goldstein, A. H., Karlik, J., and co-authors. 2013. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements. Glob. Chang. Biol. 19, 2427–2443. doi:10.1111/gcb.12222
Farquhar, G. D., 1978. Feedforward responses of stomata to humidity. Functional Plant Biol. 5, 787–800. doi:10.1071/PP9780787
Farquhar, G. D., Walker, D. A., and Osmond, C. B., 1989. Models of integrated photosynthesis of cells and leaves. Philos. Trans. R. Soc. Lond. B Biol. Sci. 323, 357–367.
Fernández-Martínez, M., Vicca, S., Janssens, I. A., Ciais, P., Obersteiner, M., and co-authors. 2017. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep. 7, 9632. doi:10.1038/s41598-017-08755-8
Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D., 2012. Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agric. For. Meteorol. 165, 53–63. doi:10.1016/j.agrformet.2012.05.018
Fu, Z., Gerken, T., Bromley, G., Araújo, A., Bonal, D., and co-authors. 2018. The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology. Agric. For. Meteorol. 263, 292–307. doi:10.1016/j.agrformet.2018.09.001
Fu, Z., Stoy, P. C., Poulter, B., Gerken, T., Zhang, Z., and co-authors. 2019. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob. Chang. Biol. 25, 3381–3394. doi:10.1111/gcb.14731
Gash, J. H. C., and Culf, A. D., 1996. Applying a linear detrend to eddy correlation data in realtime. Boundary-Layer Meteorol. 79, 301–306. doi:10.1007/BF00119443
Granier, A., Bréda, N., Biron, P., and Villette, S., 1999. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model 116, 269–283. doi:10.1016/S0304-3800(98)00205-1
Granier, A., and Loustau, D., 1994. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agric. For. Meteorol 71, 61–81. doi:10.1016/0168-1923(94)90100-7
Granier, A., Loustau, D., and Br⏧da, N., 2000. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 57, 755–765. doi:10.1051/forest:2000158
Granier, A., Reichstein, M., Bréda, N., Janssens, I. A., Falge, E., and co-authors. 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol 143, 123–145. doi:10.1016/j.agrformet.2006.12.004
Hollinger, D. Y., Aber, J., Dail, B., Davidson, E. A., Goltz, S. M., and co-authors. 2004. Spatial and temporal variability in forest–atmosphere CO2 exchange. Global Change Biol. 10, 1689–1706. doi:10.1111/j.1365-2486.2004.00847.x
Hong, J., and Kim, J., 2011. Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications. Glob. Change Biol. 17, 1900–1916. doi:10.1111/j.1365-2486.2010.02337.x
Horst, T. W., and Lenschow, D. H., 2009. Attenuation of scalar fluxes measured with spatially-displaced sensors. Boundary-Layer Meteorol. 130, 275–300. doi:10.1007/s10546-008-9348-0
Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., and co-authors. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol. 7, 269–278. doi:10.1046/j.1365-2486.2001.00412.x
Jarosz, N., Brunet, Y., Lamaud, E., Irvine, M., Bonnefond, J.-M., and co-authors. 2008. Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability. Agric. For. Meteorol. 148, 1508–1523. doi:10.1016/j.agrformet.2008.05.001
Jia, X., Zha, T., Gong, J., Zhang, Y., Wu, B., and co-authors. 2018. Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agric. For. Meteorol. 259, 250–259. doi:10.1016/j.agrformet.2018.05.009
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., and co-authors. 2017. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520. doi:10.1038/nature20780
Katul, G., Lai, C.-T., Schäfer, K., Vidakovic, B., Albertson, J., and co-authors. 2001. Multiscale analysis of vegetation surface fluxes: from seconds to years. Adv. Water Resour. 24, 1119–1132. doi:10.1016/S0309-1708(01)00029-X
Klumpp, K., Tallec, T., Guix, N., and Soussana, J.-F., 2011. Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture. Glob. Change Biol. 17, 3534–3545. doi:10.1111/j.1365-2486.2011.02490.x
Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., and co-authors. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 113, 97–120. doi:10.1016/S0168-1923(02)00104-1
Liaw, A., and Wiener, M., 2018. RandomForest Package, 2018. Breiman and Cutler’s Random Forests for Classification and Regression. 29pp. Online at: https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
Liu, Z., Ballantyne, A. P., Poulter, B., Anderegg, W. R. L., Li, W., and co-authors. 2018. Precipitation thresholds regulate net carbon exchange at the continental scale. Nat. Commun. 9, 3596. doi:10.1038/s41467-018-05948-1
Loescher, H. W., Oberbauer, S. F., Gholz, H. L., and Clark, D. B., 2003. Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biol. 9, 396–412. doi:10.1046/j.1365-2486.2003.00599.x
Loustau, D., and Granier, A., 1993. Environmental control of water flux through maritime pine (Pinus pinaster Ait.). In: Water Transport in Plants under Climatic Stress (eds. M., Borghetti, J., Grace, A., Raschi). Cambridge University Press, Cambridge, 205–18 pp.
Loustau, D., Bosc, A., Colin, A., Ogée, J., Davi, H., and co-authors. 2005. Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiol. 25, 813–823. doi:10.1093/treephys/25.7.813
Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., and co-authors. 2007a. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol. 13, 2509–2537. doi:10.1111/j.1365-2486.2007.01439.x
Luyssaert, S., Janssens, I. A., Sulkava, M., Papale, D., Dolman, A. J., and co-authors. 2007b. Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global Change Biol. 13, 2110–2127. doi:10.1111/j.1365-2486.2007.01432.x
Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., and co-authors. 2011. Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. Agric. For. Meteorol 151, 1233–1243. doi:10.1016/j.agrformet.2011.04.015
Mauder, M., and Foken, T., 2004. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2–Universität Bayreuth. Abt. Mikrometeorologie, Arbeit-Sergebnisse 26, 44. pp. (Print: ISSN 1614-8916; Internet:ISSN 1614-8926).
McInerney, D., and Nieuwenhuis, M., 2009. Comparative analysis of kNN and decision tree methods for the Irish National Forest Inventory. Int J. Remote Sens 30, 4937–4955. doi:10.1080/01431160903022936
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., and co-authors. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol 17, 2134–2144. doi:10.1111/j.1365-2486.2010.02375.x
Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., and Heimann, M., 2010. Characterization of ecosystem responses to climatic controls using artificial neural networks. Glob. Change Biol. 16, 2737–2749. doi:10.1111/j.1365-2486.2010.02171.x
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T., 2005. Averaging, detrending, and filtering of Eddy covariance time series. In: Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, Atmospheric and Oceanographic Sciences Library (eds. X., Lee, W., Massman, B., Law). Springer, Dordrecht, Netherlands, 7–31 pp.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., and co-authors. 1997. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol., HAPEX-Sahel 188-189, 589–611. doi:10.1016/S0022-1694(96)03194-0
Moreaux, V., Lamaud, É., Bosc, A., Bonnefond, J.-M., Medlyn, B. E., and co-authors. 2011. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth. Tree Physiol. 31, 903–921. doi:10.1093/treephys/tpr048
Morlet, J., Arens, G., Fourgeau, E., and Giard, D., 1982. Wave propagation and sampling theory—Part II: Sampling theory and complex waves. Geophysics 47, 222–236. doi:10.1190/1.1441329
Mouillot, F., Rambal, S., and Lavorel, S., 2001. A generic process-based SImulator for meditERRanean landscApes (SIERRA): design and validation exercises. For. Ecol. Manag. 147, 75–97. doi:10.1016/S0378-1127(00)00432-1
Moya, M. R., Sánchez-Cañete, E. P., Vargas, R., López-Ballesteros, A., Oyonarte, C., and co-authors. 2019. CO2 dynamics are strongly influenced by low frequency atmospheric pressure changes in semiarid grasslands. J. Geophys. Res. Biogeosci. 124, 902–917. doi:10.1029/2018JG004961
Niu, S., Fu, Z., Luo, Y., Stoy, P. C., Keenan, T. F., and co-authors. 2017. Interannual variability of ecosystem carbon exchange: From observation to prediction. Global Ecol. Biogeogr. 26, 1225–1237. doi:10.1111/geb.12633
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., and co-authors. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Clim. Change 6, 1023–1027. doi:10.1038/nclimate3114
Ogée, J., Brunet, Y., Loustau, D., Berbigier, P., and Delzon, S., 2003. MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Global Change Biol. 9, 697–717. doi:10.1046/j.1365-2486.2003.00628.x
Oren, R., Sperry, J. S., Katul, G. G., Pataki, D. E., Ewers, B. E., and co-authors. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526. doi:10.1046/j.1365-3040.1999.00513.x
Ouyang, Z., Chen, J., Becker, R., Chu, H., Xie, J., and co-authors. 2014. Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange at multiple time scales. Ecol. Complex 19, 46–58. doi:10.1016/j.ecocom.2014.04.005
Papale, D., Black, T. A., Carvalhais, N., Cescatti, A., Chen, J., and co-authors. 2015. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. J. Geophys. Res. Biogeosci. 120, 1941–1957. doi:10.1002/2015JG002997
Papale, D., and Valentini, R., 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biol. 9, 525–535. doi:10.1046/j.1365-2486.2003.00609.x
Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., and co-authors. 2007. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems - the effect of drought. Biogeosciences 4, 791–802. doi:10.5194/bg-4-791-2007
Pita, G., Gielen, B., Zona, D., Rodrigues, A., Rambal, S., and co-authors. 2013. Carbon and water vapor fluxes over four forests in two contrasting climatic zones. Agric. For. Meteorol. 180, 211–224. doi:10.1016/j.agrformet.2013.06.003
Rambal, S., Ourcival, J.-M., Joffre, R., Mouillot, F., Nouvellon, Y., and co-authors. 2003. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Global Change Biol. 9, 1813–1824. doi:10.1111/j.1365-2486.2003.00687.x
Rayment, M. B., Loustau, D., and Jarvis, P. J., 2002. Photosynthesis and respiration of black spruce at three organizational scales: shoot, branch and canopy. Tree Physiol. 22, 219–229. doi:10.1093/treephys/22.4.219
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., and co-authors. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol. 11, 1424–1439. doi:10.1111/j.1365-2486.2005.001002.x
Richardson, A. D., Hollinger, D. Y., Aber, J. D., Ollinger, S. V., and Braswell, B. H., 2007. Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob. Change Biol. 13, 788–803. doi:10.1111/j.1365-2486.2007.01330.x
Rösch, A., and Schmidbauer, H., 2018. WaveletComp 1.1: A guided tour through the R package. Online at: https://CRAN.R-project.org/package=WaveletComp58pp.
Shao, J., Zhou, X., Luo, Y., Li, B., Aurela, M., and co-authors. 2016. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems. Tellus B Chem. Phys. Meteorol. 68, 30575. doi:10.3402/tellusb.v68.30575
Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., and Janssens, I., 2015. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356. doi:10.1002/2014MS000358
Stoy, P. C., Dietze, M. C., Richardson, A. D., Vargas, R., Barr, A. G., and co-authors. 2013. Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis. Biogeosciences 10, 6893–6909. doi:10.5194/bg-10-6893-2013
Stoy, P. C., Katul, G. G., Siqueira, M. B. S., Juang, J.-Y., McCarthy, H. R., and co-authors. 2005. Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiol. 25, 887–902. doi:10.1093/treephys/25.7.887
Stoy, P. C., Richardson, A. D., Baldocchi, D. D., Katul, G. G., Stanovick, J., and co-authors. 2009. Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences 6, 2297–2312. doi:10.5194/bg-6-2297-2009
Torrence, C., and Compo, G. P., 1998. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 18.
Torrence, C., and Webster, P. J., 1999. Interdecadal changes in the ENSO–Monsoon System. J. Clim. 12, 12.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., and co-authors. 2016. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313. doi:10.5194/bg-13-4291-2016
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., and co-authors. 2007. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. 112, G02020.
Vargas, R., Baldocchi, D. D., Allen, M. F., Bahn, M., Black, T. A., and co-authors. 2010a. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux. Ecol. Appl. 20, 1569–1582. doi:10.1890/09-0693.1
Vargas, R., Detto, M., Baldocchi, D. D., and Allen, M. F., 2010b. Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob. Change Biol. 16, 1589–1605. doi:10.1111/j.1365-2486.2009.02111.x
Vargas, R., Baldocchi, D. D., Bahn, M., Hanson, P. J., Hosman, K. P., and co-authors. 2011. On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations. New Phytol. 191, 1006–1017. doi:10.1111/j.1469-8137.2011.03771.x
Vialet-Chabrand, S. R. M., Matthews, J. S. A., McAusland, L., Blatt, M. R., Griffiths, H., and co-authors. 2017. Temporal dynamics of stomatal behavior: Modeling and implications for photosynthesis and water use. Plant Physiol. 174, 603–613. doi:10.1104/pp.17.00125
Vickers, D., and Mahrt, L., 1997. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol. 14, 512–526.(1997)014 < 0512:QCAFSP > 2.0.CO;2 doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
Vuichard, N., Soussana, J.-F., Ciais, P., Viovy, N., and Ammann, C, and co-authors. 2007. Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 1. Model evaluation from in situ measurements. Glob. Biogeochem. Cycles 21, GB1004, doi:10.1029/2005GB002611.
Webb, E. K., Pearman, G. I., and Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. QJ. Royal Met. Soc. 106, 85–100. doi:10.1002/qj.49710644707
White, M. A., Running, S. W., and Thornton, P. E., 1999. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145. doi:10.1007/s004840050097
Wilczak, J. M., Oncley, S. P., and Stage, S. A., 2001. Sonic Anemometer tilt correction algorithms. Bound.-Layer Meteorol. 99, 127–150. doi:10.1023/A:1018966204465
Wohlfahrt, G., Fenstermaker, L. F., and Arone, J. A A., III. 2008. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biol. 14, 1475–1487. doi:10.1111/j.1365-2486.2008.01593.x
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., and co-authors. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015–5030. doi:10.5194/bg-15-5015-2018