[en] In order to make Computational homogenization affordable, pre-off-line finite element simulations are conducted on the mesoscale problem in order to build a synthetic database that can, in turn, be used to train surrogate models, which can be used as a constitutive law on a classical finite element simulation, speeding up the multi-scale process by several orders.
Artificial neural networks (NNWs) offer the possibility to serve as a surrogate model, but a difficulty arises for elasto-plasticity because of its history-dependency. This difficulty can be solved by considering a Recurrent Neural Network (RNN), which uses sequential information [1]. Nevertheless, in order to be accurate under multi-dimensional non-proportional loading conditions, a sufficiently wide database is required in order to perform the training. To this end, a sequential training synthetic database is obtained from finite element simulations on an elasto-plastic RVE subjected to random loading paths. The RNN predictions are thus found to be in agreement with the FE2 simulations, while reducing the computational cost by 4 orders.
Nevertheless, such a paradigm is essentially used as a mapping between the macro-stress and macro-strain tensors of the micro-scale boundary value response and the micro-structure information could not be recovered in a so-called localization step. We thus also develop Recurrent Neural Networks (RNNs)-based surrogate of the local micro-structure state variables for complex loading scenarios [2]. In order to address the curse of dimensionality arising because of the large amount of internal state variables in the micro-structure, we enrich the RNN with PCA dimensionality reduction and dimensionality break down, i.e. the use of several RNNs instead of a single one. The sequential training strategy is optimized to allow for GPU usage.
Wu, Ling ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A Recurrent Neural Network-based Surrogate Model for History-Dependent Multi-scale Simulations of Composite Materials
Publication date :
08 December 2021
Event name :
BRAIA Lecture Series on Technology Frontier
Event organizer :
BRAIA
Event place :
Northwestern Polytechnical University, China
Event date :
8 December 2021
Audience :
International
European Projects :
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Funders :
EU - European Union EC - European Commission
Funding text :
This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement No. 862015 for the project “Multiscale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM)” of the H2020-EU.1.2.1. - FET Open Programme.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.