dawn storm; polar magnetosphere; Jupiter's aurora; electron precipitation; ultraviolet emissions; particles and fields
Abstract :
[en] Abstract We present multi-instrument Juno observations on day-of-year 86, 2017 that link particles and fields in Jupiter's polar magnetosphere to transient UV emissions in Jupiter's northern auroral region known as dawn storms. Juno ranged from 42°N to 51°N in magnetic latitude and 5.8–7.8 Jovian radii (1 RJ = 71,492 km) during this period. These dawn storm emissions consisted of two separate, elongated structures which extended into the nightside, rotated with the planet, had enhanced brightness (up to at least 1.4 megaRayleigh) and high color ratios. The color ratio is a proxy for the atmospheric penetration depth and therefore the energy of the electrons that produce the UV emissions. Juno observed electrons and ions on magnetic field lines mapping to these emissions. The electrons were primarily field-aligned, bidirectional, and, at times, exhibited sudden intensity decreases below ∼10 keV coincident with intensity enhancements up to energies of ∼1,000 keV, consistent with the high color ratio observations. The more energetic electron distributions had characteristic energies of ∼160–280 keV and downward energy fluxes (∼70–135 mW m−2) that were a significant fraction needed to produce the UV emissions for this event. Magnetic field perturbations up to ∼0.7 of the local magnetic field showing evidence of upward and downward field-aligned currents, whistler mode waves, and broadband kilometric radio emissions were also observed along Juno's trajectory during this time frame. These high-latitude observations show similarities to those in the equatorial magnetosphere associated with dynamics processes such as interchange events, plasma injections, and/or tail reconnection.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ebert, R. W.
Greathouse, T. K.
Clark, G.
Hue, V.
Allegrini, F.
Bagenal, F.
Bolton, S. J.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., et al. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 44, 7131–7139. https://doi.org/10.1002/2017GL073180
Allegrini, F., Gladstone, G. R., Hue, V., Clark, G., Szalay, J. R., Kurth, W. S., et al. (2020). First report of electron measurements during a Europa footprint tail crossing by Juno. Geophysical Research Letters, 47, e2020GL089732. https://doi.org/10.1029/2020GL089732
Allegrini, F., Mauk, B., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., et al. (2020). Energy flux and characteristic energy of electrons over Jupiter’s main auroral emission. Journal of Geophysical Research: Space Physics, 125, e2019JA027693. https://doi.org/10.1029/2019JA027693
Ballester, G. E., Clarke, J. T., Trauger, J. T., Harris, W. M., Stapelfeldt, K. R., Crisp, D., et al. (1996). Time-resolved observations of Jupiter’s far-ultraviolet aurora. Science, 274(5286), 409–413. https://doi.org/10.1126/science.274.5286.409
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T., et al. (2017). The Juno mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Grodent, D., Gérard, J.-C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io's control over the magnetosphere of Jupiter. Geophysical Research Letters, 39, L01105. https://doi.org/10.1029/2011GL050253
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J.-C., Matar, J., et al. (2021). Are dawn storms Jupiter’s auroral substorms? AGU Advances, 2, e2020AV000275. https://doi.org/10.1029/2020AV000275
Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. R., Shemansky, D. E., Holberg, J. B., et al. (1979). Extreme ultraviolet observations from voyager 1 encounter with Jupiter. Science, 204(4396), 979–982. https://doi.org/10.1126/science.204.4396.979
Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., et al. (2018). Precipitating electron energy flux and characteristic energies in Jupiter’s main auroral region as measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 123, 7554–7567. https://doi.org/10.1029/2018JA025639
Clarke, J. T., Ballester, G., Trauger, J., Ajello, J., Pryor, W., Tobiska, K., et al. (1998). Hubble Space Telescope imaging of Jupiter’s UV aurora during the Galileo orbiter mission. Journal of Geophysical Research, 103(E9), 20217–20236. https://doi.org/10.1029/98JE01130
Connerney, J. E. P., Acuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86, 8370–8384. https://doi.org/10.1029/JA086iA10p08370
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., et al. (2017). Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213, 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno Era. Journal of Geophysical Research: Space Physics, 125, e2020JA028138. https://doi.org/10.1029/2020JA028138
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, J.-C. (2014). Jupiter’s equatorward auroral features: Possible signatures of magnetospheric injections. Journal of Geophysical Research: Space Physics, 119, 10068–10077. https://doi.org/10.1029/2018JA025708
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., Roussos, E., & Paranicas, C. (2018). Evolution of the auroral signatures of Jupiter’s magnetosphere injections. Journal of Geophysical Research: Space Physics, 123, 8489–8501. https://doi.org/10.1029/2018JA025708
Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., et al. (2017). Spatial distribution and properties of 0.1–100 keV electrons in Jupiter’s polar aurora region. Geophysical Research Letters, 44, 9199–9207. https://doi.org/10.1002/2017GL075106
Ebert, R. W., Greathouse, T. K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., et al. (2019). Comparing electron energetics and UV brightness in Jupiter’s northern polar auroral region prior for Juno perijove 5. Geophysical Research Letters, 46, 19–27. https://doi.org/10.1029/2018GL081129
Elliott, S. S., Gurnett, D. A., Kurth, W. S., Mauk, B. H., Ebert, R. W., Clark, G., et al. (2018). The acceleration of electrons to high energies over the Jovian polar cap via whistler mode wave-particle interactions. Journal of Geophysical Research: Space Physics, 123, 7523–7533. https://doi.org/10.1029/2018JA025797
Gérard, J.-C., Bonfond, B., Grodent, D., Radiotti, A., Clarke, J. T., Gladstone, G. R., et al. (2014). Mapping the electron energy in Jupiter’s aurora: Hubble Spectral Observations. Journal of Geophysical Research: Space Physics, 119, 9072–9088. https://doi.org/10.1002/2014JA020514
Gérard, J.-C., Bonfond, B., Mauk, B., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124, 8298–8317. https://doi.org/10.1029/2019JA026862
Gérard, J.-C., Grodent, D., Dols, V., Prangé, R., Waite, J. H., Gladstone, G. R., et al. (1994). A remarkable auroral event on Jupiter observed in the ultraviolet with the Hubble Space Telescope. Science, 266, 1675–1678. https://doi.org/10.1126/science.266.5191.1675
Gérard, J.-C., & Singh, V. (1982). A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. Journal of Geophysical Research, 87(A6), 4524–4532. https://doi.org/10.1029/JA087iA06p04525
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, F. A., et al. (2019). Alfvénic fluctuations associated with Jupiter's auroral emissions. Geophysical Research Letters, 46, 7157–7165. https://doi.org/10.1029/2019GL082951
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA’s Juno mission. Space Science Reviews, 213, 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gray, R. L., Badman, S. V., Bonfond, B., Kimura, T., Misawa, H., Nichols, J. D., et al. (2016). Auroral evidence of radial transport at Jupiter during January 2014. Journal of Geophysical Research: Space Physics, 121, 9972–9984. https://doi.org/10.1002/2016JA023007
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187, 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W. H., Gerard, J.-C., & Kim, J. (2003). Jupiter’s polar aurora emissions. Journal of Geophysical Research, 108(A10), 1366. https://doi.org/10.1029/2003JA010017
Grodent, D., Waite, J. H., Jr., & Gérard, J.-C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106(A7), 12933–12952. https://doi.org/10.1029/2000JA900129
Gustin, J., Cowley, S. W. H., Gérard, J.-C., Gladstone, G. R., Grodent, D., & Clarke, J. T. (2006). Characteristics of Jovian morning bright FUV aurora form Hubble Space Telescope/space telescope imaging spectrograph imaging and spectral observations. Journal of Geophysical Research, 111, A09220. https://doi.org/10.1029/2006JA011730
Imai, M., Greathouse, T. K., Kurth, W. S., Gladstone, G. R., Louis, C. K., Zarka, P., et al. (2019). Probing Jovian kilometric radio sources tied to the ultraviolet main auroral oval with Juno. Geophysical Research Letters, 46, 571–579. https://doi.org/10.1029/2018GL081227
Imai, M., Kurth, W. S., Hospodarsky, G. B., Bolton, S. J., Connerney, J. E. P., Levin, S. M., et al. (2017). Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array. Geophysical Research Letters, 44, 4455–4462. https://doi.org/10.1002/2016GL072454
Kimura, T., Badman, S. V., Tao, C., Yoshioka, K., Murakami, G., Yamazaki, A., et al. (2015). Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope. Geophysical Research Letters, 42, 1662–1668. https://doi.org/10.1002/2015GL063272
Kimura, T., Nichols, J. D., Gray, R. L., Tao, C., Murakami, G., Yamazaki, A., et al. (2017). Transient brightening of Jupiter’s aurora observed by the Hisaki Satellite and Hubble Space Telescope during approach phase of the Juno spacecraft. Geophysical Research Letters, 44, 4523–4531. https://doi.org/10.1002/2017GL072912
Kolmasova, I., Imai, M., Santolik, O., Kurth, W. S., Hospodarsky, G. B., Gurnett, D. A., et al. (2018). Discovery of rapid whistlers close to Jupiter implying similar lightning rates as on Earth. Nature Astronomy, 2(7), 544–548. https://doi.org/10.1038/s41550-018-0442-z
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., et al. (2019). Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3, 904–909. https://doi.org/10.1038/s41550-019-0819-7
Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., & Williams, D. J. (1998). Energetic particle bursts in the predawn Jovian magnetotail. Geophysical Research Letters, 25(8), 1249–1252. https://doi.org/10.1029/98GL00863
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. E., Piker, C. W., et al. (2017). The Juno waves investigation. Space Science Reviews, 213, 347–392. https://doi.org/10.1007/s11214-017-0396-y
Kurth, W. S., Mauk, B. H., Elliott, S. S., Gurnett, D. A., Hospodarsky, G. B., Santolik, O., et al. (2018). Whistler mode waves associated with broadband auroral electron precipitation at Jupiter. Geophysical Research Letters, 45, 9372–9379. https://doi.org/10.1029/2018GL078566
Li, W., Thorne, R. M., Ma, Q., Zhang, X.-J., Gladstone, G. R., Hue, V., et al. (2017). Understanding the origin of Jupiter’s diffuse aurora using Juno’s first perijove observations. Geophysical Research Letters, 44, 10162–10170. https://doi.org/10.1002/2017GL075545
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2017). Generation of the Jovian hectometric radiation: First lessons from Juno. Geophysical Research Letters, 44, 4439–4446. https://doi.org/10.1002/2017GL072923
Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., et al. (2018). Observation of electron conics by Juno: Implications for radio generation and acceleration processes. Geophysical Research Letters, 45, 9408–9416. https://doi.org/10.1029/2018GL078973
Louarn, P., Andre, N., Jackman, C., Kasahara, S., Kronberg, E., & Vogt, M. (2014). Magnetic reconnection and associated transient phenomena within the magnetospheres of Jupiter and Saturn. Space Science Reviews, 187, 181–227. https://doi.org/10.1007/s11214-014-0047-5
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter's polar cap and main aurora; a broad overview. Journal of Geophysical Research: Space Physics, 125, e2019JA027699. https://doi.org/10.1029/2019JA027699
Mauk, B. H., Clarke, J. T., Grodent, D., Waite, J. H., Jr., Paranicas, C. P., & Williams, D. J. (2002). Transient aurora on Jupiter from injection of magnetospheric electrons. Nature, 415, 1003–1005. https://doi.org/10.1038/4151003a
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., et al. (2017). The Jupiter energetic particle detector instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213(1–4), 289–346. https://doi.org/10.1007/s11214-013-0025-3
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017a). Juno observations of energetic charged particles over Jupiter’s polar regions: Analysis of mono- and bi-directional electron beams. Geophysical Research Letters, 44, 4410–4418. https://doi.org/10.1002/2016GL072286
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017b). Discrete and broadband electron acceleration generating Jupiter's uniquely powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
Mauk, B. H., Williams, D. J., & McEntire, R. W. (1997). Energy-time dispersed charged particle signatures of dynamic injections in Jupiter’s inner magnetosphere. Geophysical Research Letters, 24(23), 2949–2952. https://doi.org/10.1029/97GL03026
Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., & Roederer, J. G. (1999). Storm-like dynamics of Jupiter’s inner and middle magnetosphere. Journal of Geophysical Research, 104(A10), 22759–22778. https://doi.org/10.1029/1999JA900097
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213, 547–643. https://doi.org/10.1007/s11214-013-9990-9
Pan, D.-X., Yao, Z.-H., Manners, H., Dunn, W., Bonfond, B., Grodent, D., et al. (2021). Ultralow-frequency waves in driving Jovian aurorae revealed by observations from HST and Juno. Geophysical Research Letters, 48, e2020GL091579. https://doi.org/10.1029/2020GL091579
Prangé, R., Zarka, P., Ballester, G. E., Livengood, T. A., Denis, L., Carr, T., et al. (1993). Correlated variations of UV and radio emissions during an outstanding Jovian auroral event. Journal of Geophysical Research, 98(E10), 18779–18791. https://doi.org/10.1029/93JE01802
Radioti, A. D., Grodent, D., Gérard, J. C., Bonfond, B., & Clarke, J. T. (2008). Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophysical Research Letters, 35, L03104. https://doi.org/10.1029/2007GL032460
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., et al. (2018). Wave-particle interaction of Alfvén waves in Jupiter’s magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123, 9560–9573. https://doi.org/10.1029/2018JA025948
Saur, J., Pouquet, A., & Matthaeus, W. H. (2003). An acceleration mechanism for the generation of the main auroral oval on Jupiter. Geophysical Research Letters, 30(5), 1260–1319. https://doi.org/10.1029/2002GL015761
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., et al. (2020). Wave-particle interactions associated with Io’s auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes, Geophysical Research Letters, 47, e2020GL088432. https://doi.org/10.1029/2020GL088432
Swithenbank-Harris, B. G., Nichols, J. D., Allegrini, F., Bagenal, F., Bonfond, B., Bunce, E. J., et al. (2021). Simultaneous observation of an auroral dawn storm with the Hubble Space Telescope and Juno. Journal of Geophysical Research: Space Physics, 126, e2020JA028717. https://doi.org/10.1029/2020JA028717
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020). Alfvénic acceleration sustains Ganymede’s footprint tail aurora. Geophysical Research Letters, 47, e2019GL086527. https://doi.org/10.1029/2019GL086527
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., et al. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123, 3061–3077. https://doi.org/10.1029/2018JE005752
Thorne, R. M., Armstrong, T. P., Stone, S., Williams, D. J., McEntire, R. W., Bolton, S. J., et al. (1997). Galileo evidence for rapid interchange transport in the Io torus. Geophysical Research Letters, 24(17), 2131–2134. https://doi.org/10.1029/97GL01788
Yao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., et al. (2020). Reconnection- and dipolarization-driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125, e2019JA027663. https://doi.org/10.1029/2019JA027663