Agriculture & agronomy Life sciences: Multidisciplinary, general & others Phytobiology (plant sciences, forestry, mycology...)
Author, co-author :
Momo, S. T.; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
Sagang, L. B. T.; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon, AMAP, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
Boyemba, F.; University of Kisangani, Democratic Republic of Congo, Kisangani, Congo
Fayolle, Adeline ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Libalah, M.; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
Loumeto, J.; University of Marien Ngouabi, Brazzaville, Congo
Medjibe, V.; Commission des Forêts d’Afrique Centrale (COMIFAC), Yaoundé, BP 20818, Cameroon
Ngomanda, A.; Institut de Recherche en Ecologie Tropicale (IRET/CENAREST), Libreville, BP 13354, Gabon
Rossi, V.; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon, Commission des Forêts d’Afrique Centrale (COMIFAC), Yaoundé, BP 20818, Cameroon, RU Forests and Societies, CIRAD, Yaoundé, Cameroon
Yongo, O.; University of Bangui, Bangui, Central African Republic
Bocko, Y.; University of Marien Ngouabi, Brazzaville, Congo
Fonton, N.; ONFi, Yaoundé, Cameroon
Kamdem, N.; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
Katembo, J.; University of Kisangani, Democratic Republic of Congo, Kisangani, Congo
Kondaoule, H. J.; ONFi, Yaoundé, Cameroon
Maïdou, H. M.; COMIFAC, Yaoundé, Cameroon
Mankou, G.; University of Marien Ngouabi, Brazzaville, Congo
Mbasi, M.; University of Kisangani, Democratic Republic of Congo, Kisangani, Congo
Mengui, T.; University of Bangui, Bangui, Central African Republic
Mofack, G. I. I.; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
Moundounga, C.; Institut de Recherche en Ecologie Tropicale (IRET/CENAREST), Libreville, BP 13354, Gabon
Moundounga, Q.; Institut de Recherche en Ecologie Tropicale (IRET/CENAREST), Libreville, BP 13354, Gabon
Nguimbous, L.; COMIFAC, Yaoundé, Cameroon
Ncham, N. N.; INDEFOR-AP, Malabo, Equatorial Guinea
Asue, F. O. M.; INDEFOR-AP, Malabo, Equatorial Guinea
Senguela, Y.-P.; University of Bangui, Bangui, Central African Republic
Viard, L.; ONFi, Yaoundé, Cameroon
Zapfack, L.; University of Yaoundé 1, Yaoundé, Cameroon
Sonké, B.; Plant Systematic and Ecology Laboratory (LaBosystE), Department of Biology, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. 115, 6506–6511 (2018).
Denman, K. L. et al. Couplings Between Changes in the Climate System and Biogeochemistry. 1–90 (2007).
Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20, 3177–3190 (2014).
Fayolle, A. et al. A regional allometry for the Congo basin forests based on the largest ever destructive sampling. For. Ecol. Manage. 430, 228–240 (2018).
Henry, M. et al. GlobAllomeTree: International platform for tree allometric equations to support volume, biomass and carbon assessment. IForest 6, 1–5 (2013).
Ploton, P. et al. Closing a gap in tropical forest biomass estimation: Taking crown mass variation into account in pantropical allometries. Biogeosciences 13, 1571–1585 (2016).
Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 1–18. https://doi.org/10.1111/geb.12803 (2018).
Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
Momo Takoudjou, S. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9, 905–916 (2018).
Lau, A. et al. Tree biomass equations from terrestrial LiDAR: A case study in Guyana. Forests 10, 1–18 (2019).
IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. (2019). https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html. (Accessed: 20th June 2019).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Williamson, G. B. & Wiemann, M. C. Measuring wood specific gravity…correctly. Am. J. Bot. 97, 519–524 (2010).
Niklas, K. J. & Spatz, H. Worldwide correlations of mechanical properties and green wood density Linked references are available on JSTOR for this article: Worldwide correlations of mechanical properties and green wood density1. 97, 1587–1594 (2010).
Niklas, K. J. Influence of Tissue Density-specific Mechanical Properties on the Scaling of Plant Height. Ann. Bot. 72, 173–179 (1993).
Van Gelder, H. A., Poorter, L. & Sterck, F. J. Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol. 171, 367–378 (2006).
Pratt, R. B., Jacobsen, A. L., Ewers, F. W. & Davis, S. D. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174, 787–798 (2007).
Lachenbruch, B. & Mcculloh, K. A. Tansley review Traits, properties, and performance: how mechanical functions in a cell, tissue, or whole. New Phytol. 204, 747–764 (2014).
Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024 (2018).
Jacobsen, A. L., Pratt, B. R., Davis, S. D. & Ewers, F. W. Comparative community physiology: Nonconvergence in water relations among three semi-arid shrub communities. New Phytol. 180, 100–113 (2008).
Zanne, A. E. et al. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).
Fortunel, C., Ruelle, J., Beauchêne, J., Fine, P. V. A. & Baraloto, C. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytol. 202, 79–94 (2014).
Ziemińska, K., Westoby, M. & Wright, I. J. Broad anatomical variation within a narrow wood density range - A study of twig wood across 69 Australian angiosperms. PLoS One 10, 1–25 (2015).
Ziemińska, K., Butler, D. W., Gleason, S. M., Wright, I. J. & Westoby, M. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5, 1–14 (2013).
Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10, 545 (2004).
Fortunel, C., Fine, P. V. A. & Baraloto, C. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct. Ecol. 26, 1153–1161 (2012).
Woodcock, D. & Shier, A. Wood specific gravity and its radial variations: The many ways to make a tree. Trees - Struct. Funct. 16, 437–443 (2002).
Poorter, L. et al. Are Functional Traits Good Predictors of Demographic Rates? Evidence From Five Neotropical Forests. 89, 1908–1920 (2008).
Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740–5 (2014).
Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
Wiemann, M. & Williamson, G. B. Wood Specific Gravity Gradients in Tropical Dry and Montane Rain Forest Trees. Am. J. Bot. 76, 924–928 (1989).
Parolin, P. Radial Gradients in Wood Specific Gravity in Trees of. Iawa J. 23, 449–457 (2002).
Rueda, R. & Williamson, G. B. Radial and Vertical Wood Specific Gravity in Ochroma pyramidale (Cav. ex Lam.) Urb. (Bombacaceae). Assoc. Trop. Biol. Conserv. 24, 512–518 (1992).
Lehnebach, R. et al. Wood Density Variations of Legume Trees in French Guiana along the Shade Tolerance Continuum: Heartwood Effects on Radial Patterns and Gradients. Forests 10, 80 (2019).
Whitmore, J. L. Wood density variation in Costa Rican balsa. Wood Sci. 5, 223–229 (1973).
Hietz, P., Valencia, R. & Joseph Wright, S. Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests. Funct. Ecol. 27, 684–692 (2013).
Osazuwa-Peters, O. L., Wright, S. J. & Zanne, A. E. Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies. Am. J. Bot. 101, 803–811 (2014).
Lachenbruch, B., Moore, J. R. & Evans, R. Size- and Age-Related Changes in Tree Structure and Function. 4, (2011).
Wiemann, M. C. & Williamson, G. B. Wood specific gravity variation with height and its implications for biomass estimation. Res. Pap. FPL-RP-677 9 (2014).
Sagang, L. B. T. et al. Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. For. Ecol. Manage. 424, 519–528 (2018).
Morel, H. et al. Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree. Bois Forets des Trop. 335, 59–69 (2018).
Nogueira, E. M., Nelson, B. W. & Fearnside, P. M. Wood density in dense forest in central Amazonia, Brazil. For. Ecol. Manage. 208, 261–286 (2005).
Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. Dryad 235, 33 (2009).
Chave, J., Muller-landau, H. C., Baker, T. R., Easdale, T. A. & Webb, C. O. Regional and Phylogenetic Variation of Wood Density across 2456 Neotropical Tree Species. Ecol. Soc. Am. 16, 2356–2367 (2006).
Hawthorne, W. D. Ecological profiles of Ghanaian forest trees. Trop. For. Pap. No. 29, 345 pp. (1995).
Larjavaara, M. & Muller-Landau, H. C. Rethinking the value of high wood density. Funct. Ecol. 24, 701–705 (2010).
Anten, N. P. R., Herrera, R. A., Schieving, F. & Onoda, Y. Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytol. 188, 1469–8137 (2010).
Hallé, F. & Oldeman, R. Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. (Masson, 1970).
Martin-Ducup, O. et al. Canopy position and shade tolerance shape distinct aspects of crown architecture in 15 tropical tree species. An approach from TLS data.
Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 10.1038/s41559-019-0882-6 (2019).
Disney, M. I. et al. Weighing trees with lasers: Advances, challenges and opportunities. Interface Focus 8, (2018).
Chave, J. et al. Ground Data are Essential for Biomass Remote Sensing Missions. Surv. Geophys. 10.1007/s10712-019-09528-w (2019).
Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, (2015).
Letouzey, R. Carte phytogéographique du Cameroun, 1:500 000, 8 feuillets + 5 notices. (1985).
Rondeux, J. La mesure des arbres et des peuplements forestiers. (Presses agronomiques de Gembloux, 1999).
Hackenberg, J., Spiecker, H., Calders, K., Disney, M. & Raumonen, P. SimpleTree - An efficient open source tool to build tree models from TLS clouds. Forests 6, 4245–4294 (2015).
Bénédet, F. et al. CoForTraits, base de données d’information sur les traits des espèces d’arbres africaines. Version 1.0. http://coforchange.cirad.fr/african_plant_trait (2013).
Loubota Panzou, G. J. et al. Architectural differences associated to functional traits among 45 coexisting tree species in central Africa. Funct. Ecol. 0–2 https://doi.org/10.1111/1365-2435.13198 (2018).
Fayolle, A. et al. A new insight in the structure, composition and functioning of central African moist forests. For. Ecol. Manage. 329, 195–205 (2014).
Webb, C. O. & Donoghue, M. J. Phylomatic: Tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181–183 (2005).
Davies, T. J. et al. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl. Acad. Sci. 101, 1904–1909 (2004).