[en] The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn's disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 10(9)/L, respectively, to ≈13 days (both HR and RR) at 350 × 10(9)/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Thibault, Gilles
Paintaud, Gilles
Sung, Hsueh Cheng
Lajoie, Laurie
Louis, Edouard ; Université de Liège - ULiège > Département des sciences cliniques > Hépato-gastroentérologie
The Getaid
Desvignes, Celine
Watier, Hervé
Gouilleux-Gruart, Valérie
Ternant, David
Language :
English
Title :
Association of IgG1 Antibody Clearance with FcγRIIA Polymorphism and Platelet Count in Infliximab-Treated Patients.
Publication date :
2021
Journal title :
International Journal of Molecular Sciences
ISSN :
1661-6596
eISSN :
1422-0067
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Simister, N.E.; Mostov, K.E. An Fc receptor structurally related to MHC class I antigens. Nat. Cell Biol. 1989, 337, 184–187. [CrossRef] [PubMed]
Morell, A.; Terry, W.D.; Waldmann, T.A. Metabolic properties of IgG subclasses in man. J. Clin. Investig. 1970, 49, 673–680. [CrossRef] [PubMed]
Stapleton, N.M.; Einarsdóttir, H.K.; Stemerding, A.M.; Vidarsson, G. The multiple facets of FcRn in immunity. Immunol. Rev. 2015, 268, 253–268. [CrossRef]
Stapleton, N.M.; Andersen, J.T.; Stemerding, A.M.; Bjarnarson, S.P.; Verheul, R.C.; Gerritsen, J.; Zhao, Y.; Kleijer, M.; Sandlie, I.; de Haas, M.; et al. Competition for FcRn mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat. Commun. 2011, 2, 599–608. [CrossRef]
Ghetie, V.; Ward, E.S. Transcytosis and Catabolism of Antibody. Immunol. Res. 2002, 25, 097–114. [CrossRef]
Roopenian, D.C.; Akilesh, S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007, 7, 715–725. [CrossRef]
Ward, E.S.; Ober, R.J. Chapter 4 Multitasking by Exploitation of Intracellular Transport Functions: The many faces of FcRn. Adv. Immunol. 2009, 103, 77–115. [CrossRef] [PubMed]
Pyzik, M.; Sand, K.M.K.; Hubbard, J.J.; Andersen, J.T.; Sandlie, I.; Blumberg, R.S. The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019, 10, 1540. [CrossRef]
Brambell, F.W.; Hemmings, W.A.; Morris, I.G. A theoretical model of gamma-globulin catabolism. Nature 1964, 203, 1352–1354. [CrossRef]
Ghetie, V.; Hubbard, J.G.; Kim, J.K.; Tsen, M.F.; Lee, Y.; Ward, E.S. Abnormally short serum half-lives of IgG in beta 2-microglobulindeficient mice. Eur. J. Immunol. 1996, 26, 690–696. [CrossRef]
Junghans, R.P.; Anderson, C.L. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. USA 1996, 93, 5512–5516. [CrossRef] [PubMed]
Challa, D.K.; Wang, X.; Montoyo, H.P.; Velmurugan, R.; Ober, R.J.; Ward, E.S. Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis. mAbs 2019, 11, 848–860. [CrossRef] [PubMed]
Stapleton, N.M.; Brinkhaus, M.; Armour, K.L.; Bentlage, A.E.H.; De Taeye, S.W.; Temming, A.R.; Mok, J.Y.; Brasser, G.; Maas, M.; Van Esch, W.J.E.; et al. Reduced FcRn-mediated transcytosis of IgG2 due to a missing Glycine in its lower hinge. Sci. Rep. 2019, 9, 1–10. [CrossRef] [PubMed]
Lejeune, J.; Brachet, G.; Watier, H. Evolutionary Story of the Low/Medium-Affinity IgG Fc Receptor Gene Cluster. Front. Immunol. 2019, 10, 1297. [CrossRef] [PubMed]
Rosenfeld, S.L.; Looney, R.J.; Leddy, J.P.; Phipps, D.C.; Abraham, G.N.; Anderson, C.L. Human Platelet Fc Receptor for Immunoglobulin G Identification as a 40,000-Molecular-Weight Membrane Protein Shared by Monocytes. J. Clin. Investig. 1985, 76, 2317–2322. [CrossRef] [PubMed]
Unkeless, J.C. Function and heterogeneity of human Fc receptors for immunoglobulin G. J. Clin. Investig. 1989, 83, 355–361. [CrossRef]
Pan, L.F.; Kreisle, R.A.; Shi, Y.D. Detection of Fcgamma receptors on human endothelial cells stimulated with cytokines tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). Clin. Exp. Immunol. 1998, 112, 533–538. [CrossRef]
Devaraj, S.; Du Clos, T.W.; Jialal, I. Binding and Internalization of C-Reactive Protein by Fcgamma Receptors on Human Aortic Endothelial Cells Mediates Biological Effects. Arter. Thromb. Vasc. Biol. 2005, 25, 1359–1363. [CrossRef]
Raaz-Schrauder, D.; Ekici, A.B.; Klinghammer, L.; Stumpf, C.; Achenbach, S.; Herrmann, M.; Reis, A.; Garlichs, C.D. The proinflammatory effect of C-reactive protein on human endothelial cells depends on the FcγRIIa genotype. Thromb. Res. 2014, 133, 426–432. [CrossRef]
Strauss, O.; Phillips, A.; Ruggiero, K.; Bartlett, A.; Dunbar, P.R. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci. Rep. 2017, 7, 44356. [CrossRef]
Kerntke, C.; Nimmerjahn, F.; Biburger, M. There Is (Scientific) Strength in Numbers: A Comprehensive Quantitation of Fc Gamma Receptor Numbers on Human and Murine Peripheral Blood Leukocytes. Front. Immunol. 2020, 11, 118. [CrossRef]
Armour, K.L.; van de Winkel, J.G.; Williamson, L.M.; Clark, M.R. Differential binding to human FcgammaRIIa and Fcgam-maRIIb receptors by human IgG wildtype and mutant antibodies. Mol. Immunol. 2003, 40, 585–593. [CrossRef]
Bruhns, P.; Iannascoli, B.; England, P.; Mancardi, D.A.; Fernandez, N.; Jorieux, S.; Daëron, M. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 2009, 113, 3716–3725. [CrossRef]
Clark, M.R.; Clarkson, S.B.; Ory, P.A.; Stollman, N.; Goldstein, I.M. Molecular basis for a polymorphism involving Fc receptor II on human monocytes. J. Immunol. 1989, 143, 1731–1734. [PubMed]
Warmerdam, P.A.; Van De Winkel, J.G.; Vlug, A.; Westerdaal, N.A.; Capel, P.J. A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J. Immunol. 1991, 147, 1338–1343.
Parren, P.W.; Warmerdam, P.A.; Boeije, L.C.; Arts, J.; Westerdaal, N.A.; Vlug, A.; Capel, P.J.; Aarden, L.A.; Van De Winkel, J.G. On the interaction of IgG subclasses with the low affinity Fc gamma RIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J. Clin. Investig. 1992, 90, 1537–1546. [CrossRef] [PubMed]
Huang, Z.-Y.; Chien, P.; Indik, Z.K.; Schreiber, A.D. Human platelet FcγRIIA and phagocytes in immune-complex clearance. Mol. Immunol. 2011, 48, 691–696. [CrossRef]
Rollin, J.; Pouplard, C.; Sung, H.C.; Leroux, D.; Saada, A.; Gouilleux-Gruart, V.; Thibault, G.; Gruel, Y. Increased risk of thrombosis in FcγRIIA 131RR patients with HIT due to defective control of platelet activation by plasma IgG2. Blood 2015, 125, 2397–2404. [CrossRef]
Mager, D.E.; Jusko, W.J. General Pharmacokinetic Model for Drugs Exhibiting Target-Mediated Drug Disposition. J. Pharmacokinet. Pharmacodyn. 2001, 28, 507–532. [CrossRef]
Gibiansky, L.; Gibiansky, E. Target-mediated drug disposition model: Relationships with indirect response models and application to population PK–PD analysis. J. Pharmacokinet. Pharmacodyn. 2009, 36, 341–351. [CrossRef]
Louis, E.; Mary, J.Y.; Vernier-Massouille, G.; Grimaud, J.C.; Bouhnik, Y.; Laharie, D.; Dupas, J.L.; Pillant, H.; Picon, L.; Veyrac, M.; et al. Maintenance of remission among patients with Crohn’s disease on antimetabolite therapy after infliximab therapy is stopped. Gastroenterology 2012, 142, 63–70. [CrossRef] [PubMed]
Lejeune, J.; Thibault, G.; Ternant, D.; Cartron, G.; Watier, H.; Ohresser, M. Evidence for Linkage Disequilibrium Between FcγRIIIa-V158F and FcγRIIa-H131R Polymorphisms in White Patients, and for an FcγRIIIa-Restricted Influence on the Response to Therapeutic Antibodies. J. Clin. Oncol. 2008, 26, 5489–5491. [CrossRef] [PubMed]
Ternant, D.; Berkane, Z.; Picon, L.; Gouilleux-Gruart, V.; Colombel, J.-F.; Allez, M.; Louis, E.; Paintaud, G. Assessment of the Influence of Inflammation and FCGR3A Genotype on Infliximab Pharmacokinetics and Time to Relapse in Patients with Crohn’s Disease. Clin. Pharmacokinet. 2014, 54, 551–562. [CrossRef] [PubMed]
Vollertsen, R.S.; McDuffie, F.C.; Bowie, E.J. Interaction of human platelets with particle-adherent aggregated IgG: Description of the experimental system and role of C1q and monomeric IgG. Clin. Exp. Immunol. 1983, 52, 423–429.
Van Mirre, E.; Teeling, J.L.; van der Meer, J.W.; Bleeker, W.K.; Hack, C.E. Monomeric IgG in intravenous Ig preparations is a functional antagonist of FcgammaRII and FcgammaRIIIb. J. Immunol. 2004, 173, 332–339. [CrossRef]
Quach, M.E.; Chen, W.; Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018, 131, 1512–1521. [CrossRef]
Nagelkerke, S.Q.; Dekkers, G.; Kustiawan, I.; Van De Bovenkamp, F.S.; Geissler, J.; Plomp, R.; Wuhrer, M.; Vidarsson, G.; Rispens, T.; Berg, T.K.V.D.; et al. Inhibition of FcγR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcγRIIb in human macrophages. Blood 2014, 124, 3709–3718. [CrossRef]
Liu, X.; Lu, L.; Yang, Z.; Palaniyandi, S.; Zeng, R.; Gao, L.-Y.; Mosser, D.M.; Roopenian, D.C.; Zhu, X. The Neonatal FcR-Mediated Presentation of Immune-Complexed Antigen Is Associated with Endosomal and Phagosomal pH and Antigen Stability in Macrophages and Dendritic Cells. J. Immunol. 2011, 186, 4674–4686. [CrossRef]
Vidarsson, G.; Stemerding, A.M.; Stapleton, N.M.; Spliethoff, S.E.; Janssen, H.; Rebers, F.E.; De Haas, M.; Van De Winkel, J.G. FcRn: An IgG receptor on phagocytes with a novel role in phagocytosis. Blood 2006, 108, 3573–3579. [CrossRef] [PubMed]
Hubbard, J.J.; Pyzik, M.; Rath, T.; Kozicky, L.K.; Sand, K.M.; Gandhi, A.K.; Grevys, A.; Foss, S.; Menzies, S.C.; Glickman, J.N.; et al. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex–driven autoimmunity. J. Exp. Med. 2020, 217. [CrossRef] [PubMed]
Ternant, D.; Mulleman, D.; Degenne, D.; Willot, S.; Guillaumin, J.-M.; Watier, H.; Goupille, P.; Paintaud, G. An Enzyme-Linked Immunosorbent Assay for Therapeutic Drug Monitoring of Infliximab. Ther. Drug Monit. 2006, 28, 169–174. [CrossRef] [PubMed]
Dall’Ozzo, S.; Tartas, S.; Paintaud, G.; Cartron, G.; Colombat, P.; Bardos, P.; Watier, H.; Thibault, G. Rituximab-dependent cytotoxicity by natural killer cells: Influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 2004, 64, 4664–4669. [CrossRef] [PubMed]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.