G M Whitesides, The origins and the future of microfluidics, Nature 442, 368 (2006).
N Convery, N Gadegaard, 30 years of microflu-idics, Micro Nano Eng. 2, 76 (2019).
A W Martinez, S T Phillips, B J Wiley, M Gupta, G M Whitesides, Flash: A rapid method for prototyping paper-based microflu-idic devices, Lab. Chip 8, 2146 (2008).
F Ghaderinezhad, R Amin, M Temirel, B Ye-nilmez, A Wentworth, S Tasoglu, High-throughput rapid-prototyping of low-cost paper-based microfluidics, Sci. Rep. 7, 3553 (2017).
A Nilghaz, D R Ballerini, W Shen, Exploration of microfluidic devices based on multi-filament threads and textiles: A review, Biomicroflu-idics 7, 51501 (2013).
M Lismont, N Vandewalle, J Joris, L Dreesen, Fiber based optofluidic biosensors, Appl. Phys. Lett. 105, 133701 (2014).
F Weyer, A Duchesne, N Vandewalle, Switch-ing behavior of droplets crossing nodes on a fiber network, Sci. Rep. 7, 13309 (2017).
F Weyer, M Ben Said, J Hotzer, M Berghoff, L Dreesen, B Nestler, N Vandewalle, Com-pound droplets on fibers, Langmuir 31, 7799 (2015).
E J Walsh, A Feuerborn, J H R Wheeler, A Na Tan, W M Durham, K R Foster, P R Cook, Microfluidics with fluid walls, Nat. Commun. 8, 816 (2017).
A Marmur, Hydro-hygro-oleo-omni-phobic? Terminology of wettability classification, Soft Matter 8, 6867 (2012).
A M Cazabat, M A Cohen Stuart, Dynamics of wetting: Effects of surface roughness, J. Phys. Chem. 90, 5845 (1986).
B Darbois Texier, P Laurent, S Stoukatch, S Dorbolo, Wicking through a confined mi-cropillar array, Microfluid. Nanofluid. 20, 53 (2016).
D Beilharz, PhD Thesis: Liquids guided by texture, ESPCI, Paris (2018).
D Quéré, P-G de Gennes, F Brochard-Wyart, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York (2013).
C G L Furmidge, Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention, J. Colloid In-terf. Sci. 17, 309 (1962).
M Miwa, A Nakajima, A Fujishima, K Hashimoto, T Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir 16, 5754 (2000).
M F Mei, B M Yu, L Luo, J C Cai, A model for the contact angle of liquid droplets on rough surfaces, Chinese Phys. Lett. 27, 076802 (2010).
H Y Kim, H J Lee, B H Kang, Sliding of liquid drops down an inclined solid surface, J. Coll. Interf. Sci. 247, 372 (2002).
N Le Grand, A Daerr, L Limat, Shape and motion of drops sliding down an inclined plane, J. Fluid Mech. 541, 293 (2005).
J Snoeijer, E Rio, N Le Grand, L Limat, Self-similar flow and contact line geometry at the rear of cornered drops, Phys. Fluids 17, 072101 (2005).
U Thiele, K Neuffer, M Bestehorn, Y Pomeau, M G Velarde, Sliding drops on an inclined plane, Colloids Surf. A 206, 87 (2002).
S P Thampi, R Adhikari, R Govindarajan, Do liquid drops roll or slide on inclined surfaces?, Langmuir 29, 3339 (2013).
M Kim, E Lee, D H Kim, R Kwak, Decoupled rolling, sliding and sticking of a viscoplastic drop on a superhydrophobic surface, J. Fluid Mech. 908, A41 (2020).
J P Dupont, D Legendre, Numerical simu-lation of static and sliding drop with contact angle hysteresis, J. Comput. Phys. 229, 2453 (2000).
G Karapetsas, N T Chamakos, A G Pap-athanasiou, Efficient modelling of droplet dynamics on complex surfaces, J. Phys. Condens. Mat. 28, 085101 (2016).
S Couvreur, A Daerr, The role of wetting het-erogeneities in the meandering instability of a partial wetting rivulet, Europhys. Lett. 99, 24004 (2012).
A Lafuma, D Quéré, Superhydrophobic states, Nat. Mater. 2, 457 (2003).
P Bourrianne, PhD Thesis: Non-mouillant et température: Application aux revêtements culinaires, ESPCI, Paris VI (2016).
T Onda, S Shibuichi, N Satoh, K Tsui, Super-water-repellent fractal surfaces, Langmuir 12, 2125 (1996).
P Brunet, J Eggers, R D Deegan, Vibration-induced climbing of drops, Phys. Rev. Lett. 99, 144501 (2007).
P Sartori, D Quagliati, S Varagnolo, M Pierno, G Mistura, F Magaletti, C M Casciola, Drop motion induced by vertical vibrations, New J. Phys. 17, 113017 (2007).
S Varagnolo, D Ferraro, P Fantinel, M Pierno, G Mistura, G Amati, L Biferale, M Sbragaglia, Stick-slip sliding of water drops on chemically heterogeneous surfaces, Phys. Rev. Lett. 111, 066101 (2013).
B Chang, Q Zhou, R H A Ras, A Shah, Z Wu, K Hjort, Sliding droplets on hy-drophilic/superhydrophobic patterned surfaces for liquid deposition, Appl. Phys. Lett. 108, 154102 (2016).
R D Deegan, O Bakajin, T F Dupont, G Hu-ber, S R Nagel, T A Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827 (1997).
J Vermant, When shape matters, Nature 476, 286 (2011).
Saint-Gobain, Float standard glass for building purpose.
D Quéré, Wetting and roughness, Annu. Rev. Mater. Res. 38, 71 (2008).
L H Tanner, The spreading of silicone oil drops on horizontal surfaces, J. Phys. D: Appl. Phys. 12, 1473 (1979).
M Maleki, M Reyssat, F Restagno, D Quéré, C Clanet, Landau-Levich menisci, J. Colloid Interf. Sci. 354, 359 (2011).
Y Jiang, M R Khadilkar, M H Al-Dahhan, M P Dudukovic, Two-phase flow distribution in 2D trickle-bed reactors, Chem. Eng. Sci. 54, 2409 (1999).
B G Abdallah, A Ros, Surface coatings for microfluidic-based biomedical devices, In: Mi-crofluidic devices for biomedical applications, Eds. X Li, Y Zhou, Pag. 63, Woodhead Pub-lishing, Cambridge (2013).