AlphaFold; anti-CRISPR proteins; bacteriophages; in-silico drug design; prokaryotic defence mechanisms; protein drug; structural biology; Molecular Medicine; Pharmaceutical Science; Drug Discovery
Abstract :
Protein therapeutics play an important role in controlling the functions and activities of disease-causing proteins in modern medicine. Despite protein therapeutics having several advantages over traditional small-molecule therapeutics, further development has been hindered by drug complexity and delivery issues. However, recent progress in deep learning-based protein structure prediction approaches, such as AlphaFold2, opens new opportunities to exploit the complexity of these macro-biomolecules for highly specialised design to inhibit, regulate or even manipulate specific disease-causing proteins. Anti-CRISPR proteins are small proteins from bacteriophages that counter-defend against the prokaryotic adaptive immunity of CRISPR-Cas systems. They are unique examples of natural protein therapeutics that have been optimized by the host-parasite evolutionary arms race to inhibit a wide variety of host proteins. Here, we show that these anti-CRISPR proteins display diverse inhibition mechanisms through accurate structural prediction and functional analysis. We find that these phage-derived proteins are extremely distinct in structure, some of which have no homologues in the current protein structure domain. Furthermore, we find a novel family of anti-CRISPR proteins which are structurally similar to the recently discovered mechanism of manipulating host proteins through enzymatic activity, rather than through direct inference. Using highly accurate structure prediction, we present a wide variety of protein-manipulating strategies of anti-CRISPR proteins for future protein drug design.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Biotechnology
Author, co-author :
Park, Ho-Min ; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Korea ; Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
Park, Yunseol ; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Korea
Vankerschaver, Joris ; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Korea ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
Van Messem, Arnout ; Université de Liège - ULiège > Département de mathématique > Statistique appliquée aux sciences
De Neve, Wesley; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Korea ; Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
Shim, Hyunjin; Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Korea
Language :
English
Title :
Rethinking Protein Drug Design with Highly Accurate Structure Prediction of Anti-CRISPR Proteins.
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [PubMed]
Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351. [CrossRef]
Hopkins, A.L.; Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 2002, 1, 727–730. [CrossRef]
Goeddel, D.V.; Kleid, D.G.; Bolivar, F.; Heyneker, H.L.; Yansura, D.G.; Crea, R.; Hirose, T.; Kraszewski, A.; Itakura, K.; Riggs, A.D. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl. Acad. Sci. USA 1979, 76, 106–110. [CrossRef] [PubMed]
Leader, B.; Baca, Q.J.; Golan, D.E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39. [CrossRef] [PubMed]
Bishop, B.; Dasgupta, J.; Klein, M.; Garcea, R.L.; Christensen, N.D.; Zhao, R.; Chen, X.S. Crystal structures of four types of human papillomavirus L1 capsid proteins: Understanding the specificity of neutralizing monoclonal antibodies. J. Biol. Chem. 2007, 282, 31803–31811. [CrossRef]
Fávero-Retto, M.P.; Palmieri, L.C.; Souza, T.A.C.B.; Almeida, F.C.L.; Lima, L.M.T.R. Structural meta-analysis of regular human insulin in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2013, 85, 1112–1121. [CrossRef]
Luthra, A.; Langley, D.B.; Schofield, P.; Jackson, J.; Abdelatti, M.; Rouet, R.; Nevoltris, D.; Mazigi, O.; Crossett, B.; Christie, M.; et al. Human antibody bispecifics through phage display selection. Biochemistry 2019, 58, 1701–1704. [CrossRef]
Ostrov, D.A.; Shi, W.; Schwartz, J.C.; Almo, S.C.; Nathenson, S.G. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science 2000, 290, 816–819. [CrossRef] [PubMed]
Dion, M.B.; Oechslin, F.; Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [CrossRef] [PubMed]
Koonin, E.V.; Dolja, V.V.; Krupovic, M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015, 479–480, 2–25. [CrossRef] [PubMed]
Watson, B.N.J.; Steens, J.A.; Staals, R.H.J.; Westra, E.R.; van Houte, S. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages. Cell Host Microbe 2021, 29, 715–725. [CrossRef]
Hampton, H.G.; Watson, B.N.J.; Fineran, P.C. The arms race between bacteria and their phage foes. Nature 2020, 577, 327–336. [CrossRef] [PubMed]
Jansen, R.; van Embden, J.D.A.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002, 43, 1565–1575. [CrossRef] [PubMed]
Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [CrossRef] [PubMed]
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [CrossRef]
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607. [CrossRef]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [CrossRef] [PubMed]
Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [CrossRef] [PubMed]
Pawluk, A.; Bondy-Denomy, J.; Cheung, V.H.W.; Maxwell, K.L.; Davidson, A.R. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio 2014, 5, e00896:1–e00896:7. [CrossRef] [PubMed]
Marino, N.D.; Pinilla-Redondo, R.; Csörgő, B.; Bondy-Denomy, J. Anti-CRISPR protein applications: Natural brakes for CRISPR-Cas technologies. Nat. Methods 2020, 17, 471–479. [CrossRef]
Pawluk, A.; Staals, R.H.J.; Taylor, C.; Watson, B.N.J.; Saha, S.; Fineran, P.C.; Maxwell, K.L.; Davidson, A.R. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 2016, 1, 16085:1–16085:6. [CrossRef] [PubMed]
Dong, L.; Guan, X.; Li, N.; Zhang, F.; Zhu, Y.; Ren, K.; Yu, L.; Zhou, F.; Han, Z.; Gao, N.; et al. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 2019, 26, 308–314. [CrossRef] [PubMed]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]
Callaway, E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 2020, 588, 203–204. [CrossRef] [PubMed]
Kufareva, I.; Abagyan, R. Methods of protein structure comparison. Methods Mol. Biol. 2012, 857, 231–257. [PubMed]
Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [CrossRef] [PubMed]
Balaji, S.; Srinivasan, N. Comparison of sequence-based and structure-based phylogenetic trees of ho-mologous proteins: Inferences on protein evolution. J. Biosci. 2007, 32, 83–96. [CrossRef]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]
Watters, K.E.; Shivram, H.; Fellmann, C.; Lew, R.J.; McMahon, B.; Doudna, J.A. Potent CRISPR-Cas9 inhibitors from Staphylococ-cus genomes. Proc. Natl. Acad. Sci. USA 2020, 117, 6531–6539. [CrossRef] [PubMed]
Athukoralage, J.S.; McMahon, S.A.; Zhang, C.; Grüschow, S.; Graham, S.; Krupovic, M.; Whitaker, R.J.; Gloster, T.M.; White, M.F. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 2020, 577, 572–575. [CrossRef] [PubMed]
Shim, H. Feature learning of virus genome evolution with the nucleotide skip-gram neural network. Evol. Bioinform. 2019, 15, 1176934318821072:1–1176934318821072:10. [CrossRef] [PubMed]
Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 2005, 3, 722–732. [CrossRef] [PubMed]
Shim, H.; Shivram, H.; Lei, S.; Doudna, J.A.; Banfield, J.F. Diverse ATPase proteins in mobilomes constitute a large potential sink for prokaryotic host ATP. Front. Microbiol. 2021, 12, 691847:1–691847:11. [CrossRef] [PubMed]
Xu, J.; Zhang, Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010, 26, 889–895. [CrossRef]
Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 2004, 57, 702–710. [CrossRef]
Holm, L. Using Dali for protein structure comparison. Methods Mol. Biol. 2020, 2112, 29–42. [PubMed]
Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J. Critical assessment of methods of pro-tein structure prediction (CASP)-Round XIV. Proteins 2021, 89, 1607–1617. [CrossRef] [PubMed]
Siew, N.; Elofsson, A.; Rychlewski, L.; Fischer, D. MaxSub: An automated measure for the assessment of protein structure prediction quality. Bioinformatics 2000, 16, 776–785. [CrossRef] [PubMed]
Taylor, W.R. Residual colours: A proposal for aminochromography. Protein Eng. 1997, 10, 743–746. [CrossRef]
Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [CrossRef]
Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [CrossRef]
Holm, L. DALI and the persistence of protein shape. Protein Sci. 2019, 29, 128–140. [CrossRef] [PubMed]
Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [CrossRef] [PubMed]
Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [CrossRef] [PubMed]
Legendre, P. Species associations: The Kendall coefficient of concordance revisited. JABES 2005, 10, 226–245. [CrossRef]
Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [CrossRef]
Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; Derosa, F. The promise of mRNA vaccines: A biotech and industrial perspective. npj Vaccines 2020, 5, 11:1–11:6. [CrossRef] [PubMed]