Abstract :
[en] For the purpose of precise mathematical modelling of chemical reaction networks, useful techniques for estimating their parameters from experimental data are necessary. In this manuscript, we propose a new parameter estimation method for enzymatic chemical reaction networks from time-series experimental data of reaction rates. The main idea is based on retrieving time-series data of the species' concentrations from the available experimental data of reaction rates by making use of parametric Bézier curves. The least-squares method is applied to these retrieved data in order to determine the best-fitting values of the parameters in the corresponding mathematical model. Subsequently, we demonstrate the applicability of our parameter estimation method on three examples of enzymatic chemical reaction networks, including a model of ryanodine receptor adaptation and a model of protein kinase cascades. We also address the issue of identifiability of chemical reaction network models from reaction rates.
Scopus citations®
without self-citations
0