Teo, P.T., Zakaria, S.K., Salleh, S.Z., Taib, M.A.A., Mohd Sharif, N., Abu Seman, A., Mohamed, J.J., Yusoff, M., Yusoff, A.H., Mohamad, M., Masri, M.N., Mamat, S., Assessment of electric arc furnace (EAF) steel slag waste's recycling options into value added green products: a review. Metals, 10, 2020, 1347.
Mauthoor, S., Mohee, R., Kowlesser, P., An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius. Waste Manag. 34 (2014), 1800–1805.
N.M. Piatak, M.B. Parsons, R.R. Seal. Characteristics and environmental aspects of slag: a review. Appl. Geochem. 2015, 57, 236–266. [CrossRef].
Hosseini, S., Soltani, S.M., Fennell, P.S., Choong, T.S.Y., Aroua, M.K., Production and applications of electric-arc-furnace slag as solid waste in environmental technologies: a review. Environ. Technol. Rev. 5 (2016), 1–11.
Rapport financier semestriel Relation actionnaires SONASID. http://www.sonasid.ma/Finances/Rapports-annuels 2019 accessed on 29 09 2020.
Bankole, L.K., Rezan, S.A., Sharif, N.M., Assessment of hexavalent chromium release in Malaysian electric arc furnace steel slag for fertilizer usage. IOP Conf. Ser. Earth Environ. Sci., 19, 2014, 012004.
Guo, J., Bao, Y., Wang, M., Steel slag in China: treatment, recycling, and management. Waste Manage. 78 (2018), 318–330.
D. Janke, L. Savov, M.E. Vogel. Secondary materials in steel production and recycling. In Sustainable Metals Management; Springer: Dordrecht, The Netherlands, 2006; pp. 313–334.
Galán-Arboledas, R.J., Álvarez de Diego, J., Dondi, M., Bueno, S., Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials. J. Clean. Prod. 142 (2017), 1778–1788.
Gencel, O., Sutcu, M., Erdogmus, E., Koc, V., Cay, V.V., Gok, M.S., Properties of bricks with waste ferrochromium slag and zeolite. Cleaner Prod. 59 (2013), 111–119.
Teo, P.T., Anasyida, A.S., Kho, C.M., Nurulakmal, M.S., Recycling of Malaysia's EAF steel slag waste as novel fluxing agent in green ceramic tile production: sintering mechanism and leaching assessment. J. Clean. Prod., 241, 2019, 118144.
Karayannis, V.G., Development of extruded and fired bricks with steel industry byproduct towards circular economy. J. Build. Eng., 7, 2016, 387.
Teo, P.T., Zakaria, S.K., Mohd Sharif, N., Seman, A.A., Ali, M., Taib, A., Mohamed, J.J., Yusoff, M., Yusoff, A.H., Mohamad, M., Ali, A., Masri, M.N., Application of general full factorial statistical experimental design's approach for the development of sustainable clay-based ceramics incorporated with malaysia's electric arc furnace steel slag waste. Crystals, 11, 2021, 442.
Wild, S., Kinuthia, J.M., Jones, G.I., Higgins, D.D., Effects of partial substitution of lime with ground granulated blast furnace slag on the strength properties of lime-stabilised sulphate-bearing clay soils”. Eng. Geol. 51 (1998), 37–53.
Shalabi, F.I., Asi, I.M., Qasrawi, H.Y., Effect of by-product steel slag on the engineering properties of clay soils. J. King Saud Univ. Eng. 29 (2017), 394–399.
Keramatikerman, M., Chegenizadeh, A., Nikraz, H., Effect of GGBFS and lime binders on the engineering properties of clay. Appl. Clay Sci. 132 (2016), 722–730, 10.1016/j.clay.2016.08.029.
Murray, H.H., Common clays. Carr, D.D., (eds.) Industrial minerals and rocks, 1994, Society for Mining, Metallurgy and Exploration, Englewood, CO, USA, 247–248.
Reeves, G.M., Sims, I., Cripps, J., Clay Materials Used in Construction. 2006, The Geological Society, London, UK, 447.
Keith, K.S., Murray, H.H., Common clays and shale. Kogel, J.E., Trivedi, N.C., Barker, J.M., Krukowski, S.T., (eds.) Industrial Minerals and Rocks. Commodities, Markets, and Uses, 2009, Society for Mining, Metallurgy, and Exploration, Englewood, CO, USA, 369–371.
Petrick, K., Diedel, R., Peuker, M., Dieterle, M., Kuch, P., Kaden, R., Krolla-Sidenstein, P., Schuhmann, R., Emmerich, K., Character and amount of I-S mixed-layer minerals and physical–chemical parameters of two ceramic clays from Westerwald, Germany: implications for processing properties. Clays Clay Minerals 59 (2011), 58–74.
Mukherjee, S., The Science of Clays. Applications in Industry, Engineering and Environment. First Edition, 2013, Capital Publishing Company, New Delhi, India, 335.
Nasri, H., Azdimoussa, A., ElHammouti, K., ElHadar, A., ElOuahabi, M., Clay Minerals 54 (2019), 379–392.
Guillemin, M., Houzay, J.-P., Le Néogène post-nappe et le Quaternaire du Rif nord-oriental. Stratigraphie et tectonique des bassins de Melilla, du Kert, de Boudinar, et du piedmont des Kebdana. 1982, Notes et Mémoires du Service Géologique du Maroc, Rabat, Morocco, 7.
Abdellah, R., Les bassins néogènes du sillon sud-rifain et du Rif nord oriental (Maroc): sédimentologie, paléontologie et évolution dynamique. Doctoral thesis, 1997, Sidi Mohammed Ben Abdellah University, Fez, Morocco.
ElOuahabi, M., ElBoudour, H.H., Daoudi, L., ElHalim, M., Fagel, N., Moroccan clay deposits: Physico-Chemical properties in view of provenance studies on ancient ceramics. Appl. Clay Sci. 172 (2019), 65–74.
R. Fqiyah, 2015. La valorisation du musée national de la ceramique de safi: La médition patrimoniale comme une possibilité de valorisation. Editions universitaires européennes.
G. Choubert, R. Charlot, A. Faure-Muret, L. Hottinger, J. Marcais, D. Tisserant, P. Vidal (1968) Note préliminaire sur le volcanisme Messinien-(Pontien) au Maroc. Comptes Rendus de l'Academie des Science, Paris, 266, 197–199.
A. Ben Bouziane (1995) Evolutions sédimentologique et diagenétique des carbonates du Dévonien des régions Oulad Abbou, Mechra Ben Abbou et Doukkala (Meseta marocaine occidentale). The‘se Sciences, Université. Hassan II. Casablanca.
H.E. Cook, P. D. Johnson, J. C. Matti, I. Zemmels, In Hayes, D.E., Frakes, L.A., et al., Init. Repts. DSDP, 28: Washington (U.S. Govt. Printing Office), (1975) 999-1007.
E, P., Biscaye Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull. 76 (1965), 803–832.
Afnor, NF P 94-051 (1993) 95-110.
Shepard, F.P., Nomenclature based on sand-silt-clay ratios. J. Sediment. Res. 24 (1954), 151–158.
ASTM. 2014. Standard test method for drying and firing shrinkage of ceramic whiteware clays. ASTM C326. West Conshohocken, PA: ASTM.
Turkish Standard Institution Ankara, Turkish standard for clay bricks. 1979, Turkish Standard Institution Ankara, Ankara, Turkey.
ASTM. 2006. Standard test method for water absorption, bulk density, apparent porosity and apparent specific gravity of fired white ware products. ASTM C373-88. West Conshohocken, PA: ASTM.
J. McManus, Blackwell, Oxford, (1988) 63–85.
Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., Chen, H., An overview of utilization of steel slag. Procedia Environ. Sci. 16 (2012), 791–801, 10.1016/j.proenv.2012.10.108.
Tabit, K., Hajjou, H., Waqif, M., Saadi, L., Ceramics Int., 2020, 7550–7558.
Shen, H., Forssberg, E., Nordström, U., Physicochemical ¨ and mineralogical properties of stainless steel slags oriented to metal recovery. Resour. Conserv. Recycling 40 (2004), 245–271.
R.D. Holtz, W.D. Kovacs, Prentice-Hall, Inc., New Jersey, (1981) 747.
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., Torre, M.J.D.L., Eur. J. Mineral. 13 (2001), 621–634.
Ferrari, S., Gualtieri, A., The use of illitic clays in the production of stoneware tileceramics. Appl. Clay Sci. 32 (2006), 73–81.
Moore, F., Two instruments for studying the plasticity of clays. J. Sci. Instr. 40 (1963), 228–231.
J. Reed, 1995. In: Reed, J.S. (Ed.), Principles of Ceramics Processing. J. Wiley and Sons, New York, pp. 450.
Maritan, L., Nodari, L., Mazzoli, C., Milano, A., Russo, U., Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter. Appl. Clay Sci. 31 (2006), 1–15.
(Dumbleton et West, 1966; de Oliveira Modesto et Bernardin, 2008; Hajjaji et al., 2010).
Hajjaji, W., Hachani, M., Moussi, B., Jeridi, K., Medhioub, M., López-Galindo, A., Rocha, F., Labrincha, J.A., Jamoussi, F., J. Afr. Earth. Sci. 57 (2010), 41–46.
M. Dondi, M. Marsigli, I. Venturi, 1998. Technological requirements of raw materials for heavy clay products. In: Proceedings of the 2nd Mediterranean Clay Meeting, Aveiro, Portugal. Vol. 2.
Y.M. Zhang, L.T. Jia, H. Mei, Q. Cui, P.G. Zhang, Z.M. Sun. Construction and Building Materials, Volume 121, 15 Septemb Chiang P C, er 2016, Pages 154-160.
Weng, C.H., Lin, D.F., Chiang, P.C., Utilization of sludge as brick materials. Adv. Environ. Res. 7 (2003), 679–685.
Jiang, D., Zeng, Y., Singh, M., Heinrich, J., Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transaction, 210. 2010, John Wiley & Sons, New Jersey.
El Halim, M., Daoudi, L., El Ouahabi, M., Amakrane, J., Fagel, N., Mater, J., Environ. Sci., 9, 2018, 2508.
Cultrone, G., Sebastian, E., Elerta, K., De la Torre, M.J., Cazalla, O., Rodriguez-Navarro, C., J. Eur. Ceramic Soc. 24 (2004), 547–564.
Dagounaki, C., Sikalidis, C., Kassoli-Fournaraki, A., Tsirambides, A., The influence of carbonates on the technological properties of an industrial red clay. Ind. Ceram. 28 (2008), 181–187.
M. El Ouahabi, L. Daoudi, F. Hatert, N. Fagel, Modified mineral phases during clay ceramic firing, Clays Clay Miner. 63 (2015) 404–413, https://doi.org/ 10.1346/CCMN.2015.0630506. meriem 2015.
Azarov, G.M., Maiorova, E.V., Oborina, M.A., Belyakov, A.V., Wollastonite raw materials and their applications (a review). Glass Ceramics 52 (1995), 237–240.
He, F., Fang, Y., Xie, J., Xie, J., Fabrication and characterization of glass–ceramics materials developed from steel slag waste. Mater. Des. 42 (2012), 198–203.
Trindade, M.J., Dias, M.I., Coroado, J., Rocha, F., Firing tests on clay-rich raw materials from the Algarve Basin (southern Portugal): study of mineral transformations with temperature. Clays Clay Min. 58 (2010), 188–204.