FAO. FAOSTAT. Food and Agriculture Organization of the United Nations - Statistic Division https://www.fao.org/faostat/en/#data/QC (2019).
Hassuani, S. J., Leal, M. R. L. V. & Macedo, I. de C. Biomass Power Generation - Sugar cane bagasse and trash. (PNUD - Programa das Nações Unidas para o Desenvolvimento And CTC - Centro de Tecnologia Canavieira, 2005).
Romero, E. R. et al. Sugarcane potential trash estimation: variety and cane yield effect. Int. Soc. Sugar Cane Technol. 26, 9–13 (2007).
Cardoso, T. F. et al. A vertical integration simplified model for straw recovery as feedstock in sugarcane biorefineries. Biomass Bioenergy 81, 216–223 (2015). DOI: 10.1016/j.biombioe.2015.07.003
Caldeira-Pires, A. et al. Implications of removing straw from soil for bioenergy: an LCA of ethanol production using total sugarcane biomass. J. Clean. Prod. 181, 249–259 (2018). DOI: 10.1016/j.jclepro.2018.01.119
Wang, Z., Dunn, J. B., Han, J. & Wang, M. Q. Effects of co-produced biochar in life cycle greenhouse gas emissions of pyrolysis-derived renewable fuels. Biofuels Bioprod. Biorefining 8, 189–204 (2014). DOI: 10.1002/bbb.1447
Peters, J. F., Iribarren, D. & Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 49, 5195–5202 (2015). DOI: 10.1021/es5060786
Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 22, 1315–1324 (2016). DOI: 10.1111/gcb.13178
El-Naggar, A. et al. Biochar influences soil carbon pools and facilitates interactions with soil: a field investigation. Land Degrad. Dev. 29, 2162–2171 (2018). DOI: 10.1002/ldr.2896
Kambo, H. S. & Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359–378 (2015). DOI: 10.1016/j.rser.2015.01.050
El-Naggar, A. et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review. J. Environ. Manag. 241, 458–467 (2019). DOI: 10.1016/j.jenvman.2019.02.044
Ding, F. et al. A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. J. Soils Sediments 18, 1507–1517 (2018). DOI: 10.1007/s11368-017-1899-6
Wang, J. et al. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 8, 512–523 (2016). DOI: 10.1111/gcbb.12266
El-Naggar, A. et al. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 332, 100–108 (2018). DOI: 10.1016/j.geoderma.2018.06.017
Leng, L. et al. Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Sci. Total Environ. 664, 11–23 (2019). DOI: 10.1016/j.scitotenv.2019.01.298
Dil, M. & Oelbermann, M. Evaluating the long-term effects of pre-conditioned biochar on soil organic carbon in two southern Ontario soils using the century model. In Sustainable Agroecosystems in Climate Change Mitigation (ed. Oelbermann, M.) 251–270 (Wageningen Academic Publishers, 2014).
Parton, W., Ojima, D., Del Grosso, S. & Keough, C. CENTURY tutorial. https://pdf-release.net/external/2357835/pdf-release-dot-net-century_tutorial.pdf (2001).
Zimmerman, A. R. Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar). Environ. Sci. Technol. 44, 1295–1301 (2010). DOI: 10.1021/es903140c
Archontoulis, S. V. et al. A model for mechanistic and system assessments of biochar effects on soils and crops and trade-offs. GCB Bioenergy 8, 1028–1045 (2016). DOI: 10.1111/gcbb.12314
Lychuk, T. E., Izaurralde, R. C., Hill, R. L., McGill, W. B. & Williams, J. R. Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model. Mitig. Adapt. Strateg. Glob. Chang. 20, 1437–1458 (2014). DOI: 10.1007/s11027-014-9554-7
Mondini, C. et al. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter. Biogeosciences 14, 3253–3274 (2017). DOI: 10.5194/bg-14-3253-2017
Cardoso, T. F. et al. A regional approach to determine economic, environmental and social impacts of different sugarcane production systems in Brazil. Biomass Bioenergy 120, 9–20 (2019). DOI: 10.1016/j.biombioe.2018.10.018
Gonzaga, L. C. et al. Implications of sugarcane straw removal for soil greenhouse gas emissions in São Paulo State, Brazil. BioEnergy Res. 12, 843–857 (2019). DOI: 10.1007/s12155-019-10006-9
Liu, Y. et al. Successive straw biochar amendments reduce nitrous oxide emissions but do not improve the net ecosystem economic benefit in an alkaline sandy loam under a wheat–maize cropping system. Land Degrad. Dev. 31, 868–883 (2020). DOI: 10.1002/ldr.3495
Li, Y., Jiang, S., Wang, T., Lin, Y. & Mao, H. Research on biochar via a comprehensive scientometric approach. RSC Adv. 8, 28700–28709 (2018). DOI: 10.1039/C8RA05689G
Maia, S. M. F. et al. Payback time for soil carbon and sugar-cane ethanol. Nat. Clim. Chang. 4, 605–609 (2014). DOI: 10.1038/nclimate2239
Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources 2014: International soil classification systems for naming soils and creating legends for soil maps (Update 2015). World Soil Resources Reports No. 106 https://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/ (2014).
USDA. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. USDA https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf (1999).
Hartemink, A. E. & McSweeney, K. Soil Carbon (Springer, Berlin, 2014). DOI: 10.1007/978-3-319-04084-4
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006). DOI: 10.1038/nature04514
Theodor Rudorff, B. F. Canasat - INPE. https://www.dsr.inpe.br/laf/canasat/tabelas.html (2014).
SEEG. São Paulo - Emissions. System for Greenhouse Gas Emissions and Removal Estimates. https://plataforma.seeg.eco.br/territories/sao-paulo/card?year=2016 (2016).
Crane-Droesch, A., Abiven, S., Jeffery, S. & Torn, M. S. Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ. Res. Lett. 8, 044049 (2013). DOI: 10.1088/1748-9326/8/4/044049
Jeffery, S. et al. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12, 053001 (2017).
Verheijen, F. et al. Biochar application to soil—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/biochar-application-soils-critical-scientific-review-effects-soilproperties-processes-and (2009).
Jeffery, S., Verheijen, F. G. A. A., van der Velde, M. & Bastos, A. C. C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144, 175–187 (2011). DOI: 10.1016/j.agee.2011.08.015
Biederman, L. A., Harpole, W. S. & Stanley Harpole, W. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5, 202–214 (2013). DOI: 10.1111/gcbb.12037
Liu, X. et al. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 373, 583–594 (2013). DOI: 10.1007/s11104-013-1806-x
Liu, X., Mao, P., Li, L. & Ma, J. Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis. Sci. Total Environ. 656, 969–976 (2019). DOI: 10.1016/j.scitotenv.2018.11.396
IBGE. Censo Agropecuario - 2017. https://biblioteca.ibge.gov.br/visualizacao/periodicos/3096/agro_2017_resultados_definitivos.pdf (2019).
Cowie, A. et al. Biochar, carbon accounting and climate change. In Biochar for Environmental Management (eds. Lehmann, J. & Joseph, S.) 763–794 (Routledge, 2015).
Borchard, N. et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci. Total Environ. 651, 2354–2364 (2018). DOI: 10.1016/j.scitotenv.2018.10.060
Cayuela, M. L., Jeffery, S. & van Zwieten, L. The molar H: COrg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric. Ecosyst. Environ. 202, 135–138 (2015). DOI: 10.1016/j.agee.2014.12.015
Jeffery, S., Verheijen, F. G. A., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016). DOI: 10.1016/j.soilbio.2016.07.021
Ji, C. et al. Variation in soil methane release or uptake responses to biochar amendment: a separate meta-analysis. Ecosystems 21, 1692–1705 (2018). DOI: 10.1007/s10021-018-0248-y
Glaser, B. & Lehr, V.-I. Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci. Rep. 9, 9338 (2019). DOI: 10.1038/s41598-019-45693-z
Hagemann, N. et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 8, 1089 (2017). DOI: 10.1038/s41467-017-01123-0
Ottoni, M. V., Ottoni Filho, T. B., Schaap, M. G., Lopes-Assad, M. L. R. C. & Rotunno Filho, O. C. Hydrophysical database for Brazilian soils (HYBRAS) and pedotransfer functions for water retention. Vadose Zone J. 17, 17 (2018). DOI: 10.2136/vzj2017.05.0095
Popin, G. V. et al. Sugarcane straw management for bioenergy: effects of global warming on greenhouse gas emissions and soil carbon storage. Mitig. Adapt. Strateg. Glob. Chang. 25, 559–577 (2020). DOI: 10.1007/s11027-019-09880-7
Silva, A. G. B., Lisboa, I. P., Cherubin, M. R. & Cerri, C. E. P. How much sugarcane straw is needed for covering the soil?. BioEnergy Res. 12, 858–864 (2019). DOI: 10.1007/s12155-019-10008-7
Waldheim, L., Monis, M. & Verde Leal, M. R. Biomass power generation: sugar cane bagasse and trash. In Progress in Thermochemical Biomass Conversion (ed. Bridgwater, A.) 509–523 (Blackwell Science Ltd, 2001).
Khatiwada, D., Leduc, S., Silveira, S. & McCallum, I. Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew. Energy 85, 371–386 (2016). DOI: 10.1016/j.renene.2015.06.009
Coleman, K. & Jenkinson, D. S. RothC—A model for the turnover of carbon in soil Model - Model description and users guide. https://www.rothamsted.ac.uk/sites/default/files/RothC_guide_WIN.pdf (2014).
Foereid, B., Lehmann, J. & Major, J. Modeling black carbon degradation and movement in soil. Plant Soil 345, 223–236 (2011). DOI: 10.1007/s11104-011-0773-3
Woolf, D. & Lehmann, J. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111, 83–95 (2012). DOI: 10.1007/s10533-012-9764-6
IPCC. Appendix 4: Method for Estimating the Change in Mineral Soil Organic Carbon Stocks from Biochar Amendments. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2–6 (2019).
Zimmerman, A. R. & Ouyang, L. Priming of pyrogenic C (biochar) mineralization by dissolved organic matter and vice versa. Soil Biol. Biochem. 130, 105–112 (2019). DOI: 10.1016/j.soilbio.2018.12.011
Sierra, C. A., Müller, M. & Trumbore, S. E. Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci. Model Dev. 5, 1045–1060 (2012). DOI: 10.5194/gmd-5-1045-2012
Core Team, R. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/ (2018).
Falloon, P., Smith, P., Coleman, K. & Marshall, S. Estimating the size of the inert organic matter pool from total organic carbon content for use in the rothamsted carbon model. Soil Biol. Biochem. 30, 1207–1211 (1998). DOI: 10.1016/S0038-0717(97)00256-3
Li, J. & Heap, A. D. A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Record 2008/23 https://data.gov.au/data/dataset/a-review-of-spatial-interpolation-methods-for-environmental-scientists (2008).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (2016).
Scarpare, F. V. et al. Sugarcane land use and water resources assessment in the expansion area in Brazil. J. Clean. Prod. 133, 1318–1327 (2016). DOI: 10.1016/j.jclepro.2016.06.074
Sampaio, I. L. M. et al. Electricity production from sugarcane straw recovered through bale system: assessment of retrofit projects. BioEnergy Res. 12, 865–877 (2019). DOI: 10.1007/s12155-019-10014-9
Alotaibi, K. D. & Schoenau, J. J. Addition of biochar to a sandy desert soil: effect on crop growth, water retention and selected properties. Agronomy 9, 327 (2019). DOI: 10.3390/agronomy9060327
Cerri, C. E. P. et al. Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and Century models. Agric. Ecosyst. Environ. 122, 46–57 (2007). DOI: 10.1016/j.agee.2007.01.007
Falloon, P. et al. Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agric. Ecosyst. Environ. 122, 114–124 (2007). DOI: 10.1016/j.agee.2007.01.013
Obia, A., Børresen, T., Martinsen, V., Cornelissen, G. & Mulder, J. Vertical and lateral transport of biochar in light-textured tropical soils. Soil Tillage Res. 165, 34–40 (2016). DOI: 10.1016/j.still.2016.07.016
Haefele, S. M. et al. Effects and fate of biochar from rice residues in rice-based systems. Fields Crop. Res. 121, 430–440 (2011). DOI: 10.1016/j.fcr.2011.01.014
Ventura, M. et al. Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biol. Fertil. Soils 55, 67–78 (2019). DOI: 10.1007/s00374-018-1329-y
Singh, B. P. et al. In situ persistence and migration of biochar carbon and its impact on native carbon emission in contrasting soils under managed temperate pastures. PLoS ONE 10, 1–20 (2015).
Major, J., Lehmann, J., Rondon, M. & Goodale, C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob. Chang. Biol. 16, 1366–1379 (2010). DOI: 10.1111/j.1365-2486.2009.02044.x
Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010). DOI: 10.1016/j.geoderma.2010.03.009
Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science (80-) 280, 1911–1913 (1998). DOI: 10.1126/science.280.5371.1911