Abbruzzini, T.F., Oliveira Zenero, M.D., de Andrade, P.A.M., Dini Andreote, F., Campo, J., Pellegrino Cerri, C.E., Effects of biochar on the emissions of greenhouse gases from sugarcane residues applied to soils. Agric. Sci. 8 (2017), 869–886, 10.4236/as.2017.89064.
Alves, M., Ponce, G.H.S.F., Silva, M.A., Ensinas, A.V., Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel. Energy 91 (2015), 751–757, 10.1016/j.energy.2015.08.101.
Anukam, A., Mamphweli, S., Reddy, P., Meyer, E., Okoh, O., Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: a comprehensive review. Renew. Sustain. Energy Rev. 66 (2016), 775–801, 10.1016/j.rser.2016.08.046.
Azzi, E.S., Karltun, E., Sundberg, C., Prospective life cycle assessment of large-scale biochar production and use for negative emissions in stockholm. Environ. Sci. Technol. 53 (2019), 8466–8476, 10.1021/acs.est.9b01615.
Barros, M.V., Piekarski, C.M., De Francisco, A.C., Carbon footprint of electricity generation in Brazil: an analysis of the 2016-2026 period. Energies, 11, 2018, 10.3390/en11061412.
Basu, P., Biomass Gasification and Pyrolysis, 2010, Elsevier https://doi.org/10.1016/C2009-0-20099-7.
Bergman, R.D., Gu, H., Page-Dumroese, D.S., Anderson, N.M., Life cycle analysis of biochar. Biochar: A Regional Supply Chain Approach in View of Climate Change Mitigation, 2015, Cambridge Univesity Press, 46–69, 10.1017/9781316337974.004.
Birru, E., Erlich, C., Martin, A., Energy performance comparisons and enhancements in the sugar cane industry. Biomass Convers. Biorefinery 9 (2019), 267–282, 10.1007/s13399-018-0349-z.
Borges, B.M.M.N., Strauss, M., Camelo, P.A., Sohi, S.P., Franco, H.C.J., Re-use of sugarcane residue as a novel biochar fertiliser - increased phosphorus use efficiency and plant yield. J. Clean. Prod., 262, 2020, 121406, 10.1016/j.jclepro.2020.121406.
Brassard, P., Godbout, S., Pelletier, F., Raghavan, V., Palacios, J.H., Pyrolysis of switchgrass in an auger reactor for biochar production: a greenhouse gas and energy impacts assessment. Biomass Bioenergy 116 (2018), 99–105, 10.1016/j.biombioe.2018.06.007.
Cardoso, T.F., Watanabe, M.D.B., Souza, A., Chagas, M.F., Cavalett, O., Morais, E.R., Nogueira, L.A.H., Leal, M.R.L.V., Braunbeck, O.A., Cortez, L.A.B., Bonomi, A., A regional approach to determine economic, environmental and social impacts of different sugarcane production systems in Brazil. Biomass Bioenergy 120 (2019), 9–20, 10.1016/j.biombioe.2018.10.018.
Conab, Perfil do setor do açúcar e ethanol no Brasil - Edição para a safra 2015/16. 2019, Brasília.
CONAB, Acompanhamento da Safra Brasileira - Cana-de-açúcar - Terceiro levantamento. Dezembro 2018, 2018.
Core Team, R., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2018 https://www.r-project.org/.
Cross, A., Sohi, S.P., A method for screening the relative long-term stability of biochar. GCB Bioenergy 5 (2013), 215–220, 10.1111/gcbb.12035.
Dale, A.T., De Lucena, A.F.P., Marriott, J., Cesar Borba, B.S.M., Schaeffer, R., Bilec, M.M., Modeling future life-cycle greenhouse gas emissions and environmental impacts of electricity supplies in Brazil. Energies 6 (2013), 3182–3208, 10.3390/en6073182.
de Oliveira Noronha, M., Zanini, R.R., Souza, A.M., The impact of electric generation capacity by renewable and non-renewable energy in Brazilian economic growth. Environ. Sci. Pollut. Res. 26 (2019), 33236–33259, 10.1007/s11356-019-06241-4.
Dias, M.O.S., Cunha, M.P., Jesus, C.D.F., Rocha, G.J.M., Pradella, J.G.C., Rossell, C.E.V., Maciel Filho, R., Bonomi, A., Second generation ethanol in Brazil: can it compete with electricity production? Bioresour. Technol. 102 (2011), 8964–8971, 10.1016/j.biortech.2011.06.098.
Diógenes, J.R.F., Claro, J., Rodrigues, J.C., Barriers to onshore wind farm implementation in Brazil. Energy Pol. 128 (2019), 253–266, 10.1016/j.enpol.2018.12.062.
EASAC. Negative emission technologies: what role in meeting Paris Agreement targets?. https://easac.eu, 2018.
EPE. The Ten-Year Expansion Plan 2027. 2017 Rio de Janeiro.
Filoso, S., Do Carmo, J.B., Mardegan, S.F., Lins, S.R.M., Gomes, T.F., Martinelli, L.A., Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals. Renew. Sustain. Energy Rev. 52 (2015), 1847–1856, 10.1016/j.rser.2015.08.012.
Gabra, M., Pettersson, E., Backman, R., Kjellström, B., Evaluation of cyclone gasifier performance for gasification of sugar cane residue - Part 2: gasification of cane trash. Biomass Bioenergy 21 (2001), 371–380, 10.1016/S0961-9534(01)00044-7.
Goglio, P., Williams, A.G., Balta-Ozkan, N., Harris, N.R.P., Williamson, P., Huisingh, D., Zhang, Z., Tavoni, M., Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. J. Clean. Prod., 244, 2020, 118896, 10.1016/j.jclepro.2019.118896.
Gonzaga, L.C., Zotelli, L. do C., de Castro, S.G.Q., de Oliveira, B.G., Bordonal, R. de O., Cantarella, H., Carvalho, J.L.N., Implications of sugarcane straw removal for soil greenhouse gas emissions in São Paulo state, Brazil. BioEnergy Res 12 (2019), 843–857, 10.1007/s12155-019-10006-9.
Hallegatte, S., Rogelj, J., Allen, M., Clarke, L., Edenhofer, O., Field, C.B., Friedlingstein, P., Van Kesteren, L., Knutti, R., Mach, K.J., Mastrandrea, M., Michel, A., Minx, J., Oppenheimer, M., Plattner, G.K., Riahi, K., Schaeffer, M., Stocker, T.F., Van Vuuren, D.P., Mapping the climate change challenge. Nat. Clim. Change 6 (2016), 663–668, 10.1038/nclimate3057.
Hariyono, B., Utomo, W.H., Utami, S.R., Islami, T., Utilization of the trash biochar and waste of sugarcane to improve the quality of sandy soil and growth of sugarcane. IOP Conf. Ser. Earth Environ. Sci., 418, 2020, 012067, 10.1088/1755-1315/418/1/012067.
Haszeldine, R.S., Flude, S., Johnson, G., Scott, V., Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376, 2018, 10.1098/rsta.2016.0447.
IEA. World Energy Outlook - 2013, Economic Outlook. 2013, 10.1111/1468-0319.00088 Paris.
IPCC. Appendix 4: method for estimating the change in mineral soil organic carbon stocks from biochar amendments. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2019, 2–6.
IPCC. Gobal Warming of 1.5°C - Special Report - Summary for Policymakers., 2018.
IPCC. Climate Change 2013: the Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., 2014, Cambridge Univesity Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC. Volume 4: Agriculture, Forestry and Other Land Use (AFOLU). 2006 Chapter 5: Cropland. IPCC Guidel. Natl. Greenh. Gas Invent. 66.
Khatiwada, D., Leduc, S., Silveira, S., McCallum, I., Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew. Energy 85 (2016), 371–386, 10.1016/j.renene.2015.06.009.
Klein, B.C., Sampaio, I.L. de M., Mantelatto, P.E., Filho, R.M., Bonomi, A., Beyond ethanol, sugar, and electricity: a critical review of product diversification in Brazilian sugarcane mills. Biofuels, Bioprod. Biorefining, 2018, 1–13, 10.1002/BBB.1969.
Leal, F.I., Rego, E.E., de Oliveira Ribeiro, C., Natural gas regulation and policy in Brazil: prospects for the market expansion and energy integration in Mercosul. Energy Pol. 128 (2019), 817–829, 10.1016/j.enpol.2019.01.030.
Lefebvre, D., Goglio, P., Williams, A., Manning, D.A.C., de Azevedo, A.C., Bergmann, M., Meersmans, J., Smith, P., Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: a case study for Sao Paulo State, Brazil. J. Clean. Prod. 233 (2019), 468–481, 10.1016/j.jclepro.2019.06.099.
Lefebvre, D., Williams, A., Meersmans, J., Kirk, G.J.D., Sohi, S., Goglio, P., Smith, P., Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Sci. Rep., 10, 2020, 19479, 10.1038/s41598-020-76470-y.
Liu, Q., Zhang, Y., Liu, B., Amonette, J.E., Lin, Z., Liu, G., Ambus, P., Xie, Z., How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426 (2018), 211–225, 10.1007/s11104-018-3619-4.
Lund, H., Mathiesen, B.V., Christensen, P., Schmidt, J.H., Energy system analysis of marginal electricity supply in consequential LCA. Int. J. Life Cycle Assess. 15 (2010), 260–271, 10.1007/s11367-010-0164-7.
Mašek, O., Buss, W., Brownsort, P., Rovere, M., Tagliaferro, A., Zhao, L., Cao, X., Xu, G., Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Sci. Rep. 9 (2019), 1–8, 10.1038/s41598-019-41953-0.
Matuštík, J., Hnátková, T., Kočí, V., Life cycle assessment of biochar-to-soil systems: a review. J. Clean. Prod., 259, 2020, 120998, 10.1016/j.jclepro.2020.120998.
Meyer, S., Bright, R.M., Fischer, D., Schulz, H., Glaser, B., Albedo impact on the suitability of biochar systems to mitigate global warming. Environ. Sci. Technol. 46 (2012), 12726–12734, 10.1021/es302302g.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H., Anthropogenic and natural radiative forcing. Jacob, D., Ravishankara, A.R., Shine, K., (eds.) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013, Cambridge University Press, New York, 10.3390/jmse6040146.
Oldfield, T.L., Sikirica, N., Mondini, C., López, G., Kuikman, P.J., Holden, N.M., Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. J. Environ. Manag. 218 (2018), 465–476, 10.1016/j.jenvman.2018.04.061.
Olivério, J.L., Ferreira, F.M., Cogeneration - a new source of income for sugar and ethanol mills. Proc. Int. Soc. Sugar Cane Technol, 2010, 1–13.
Panorama Offshore, Thermoelectric plant will be deployed in Sao Paulo until 2024. 2.25.20 https://www.panoramaoffshore.com.br/en/plant-termoeletrica-sera-deployed-in-sao-paulo-until-2024/, 2018.
Park, J., Lee, Y., Ryu, C., Park, Y.-K., Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresour. Technol. 155 (2014), 63–70, 10.1016/j.biortech.2013.12.084.
Pennise, D.M., Smith, K.R., Kithinji, J.P., Rezende, M.E., Raad, T.J., Zhang, J., Fan, C., Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. J. Geophys. Res. Atmos. 106 (2001), 24143–24155, 10.1029/2000JD000041.
Peters, J.F., Iribarren, D., Dufour, J., Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 49 (2015), 5195–5202, 10.1021/es5060786.
Pippo, W.A., Luengo, C.A., Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. Int. J. Energy Environ. Eng. 4 (2013), 1–13, 10.1186/2251-6832-4-10.
PRé Consultants: Life Cycle consultancy and software solutions. SimaPro 8.3. PRé Consultants: Life Cycle Consultancy and Software Solutions. 2019 Amersfoort, Netherlands.
Quirk, R.G., Van Zwieten, L., Kimber, S., Downie, A., Morris, S., Rust, J., Utilization of biochar in sugarcane and sugar-industry management. Sugar Tech 14 (2012), 321–326, 10.1007/s12355-012-0158-9.
Rajabi Hamedani, S., Kuppens, T., Malina, R., Bocci, E., Colantoni, A., Villarini, M., Life cycle assessment and environmental valuation of biochar production: two case studies in Belgium. Energies, 12, 2019, 2166, 10.3390/en12112166.
Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R., Lehmann, J., Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 44 (2010), 827–833, 10.1021/es902266r.
Roy, P., Dias, G., Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 77 (2017), 59–69, 10.1016/j.rser.2017.03.136.
Sampaio, I.L.M., Cardoso, T.F., Souza, N.R.D., Watanabe, M.D.B., Carvalho, D.J., Bonomi, A., Junqueira, T.L., Electricity production from sugarcane straw recovered through bale system: assessment of retrofit projects. BioEnergy Res 12 (2019), 865–877, 10.1007/s12155-019-10014-9.
Santos, M.J., Ferreira, P., Araújo, M., Portugal-Pereira, J., Lucena, A.F.P., Schaeffer, R., Scenarios for the future Brazilian power sector based on a multi-criteria assessment. J. Clean. Prod. 167 (2017), 938–950, 10.1016/j.jclepro.2017.03.145.
Scarpare, F.V., Hernandes, T.A.D., Ruiz-Corrêa, S.T., Picoli, M.C.A., Scanlon, B.R., Chagas, M.F., Duft, D.G., Cardoso, T. de F., Sugarcane land use and water resources assessment in the expansion area in Brazil. J. Clean. Prod. 133 (2016), 1318–1327, 10.1016/j.jclepro.2016.06.074.
Schmidt, H.-P., Anca-Couce, A., Hagemann, N., Werner, C., Gerten, D., Lucht, W., Kammann, C., Pyrogenic carbon capture and storage. GCB Bioenergy, 2018, 1–19, 10.1111/gcbb.12553.
Seabra, J.E.A., Macedo, I.C., Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Pol. 39 (2011), 421–428, 10.1016/j.enpol.2010.10.019.
Seabra, J.E.A., Macedo, I.C., Chum, H.L., Faroni, C.E., Sarto, C.A., Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels, Bioprod. Biorefining 5 (2011), 519–532, 10.1002/bbb.289.
SEEG. São Paulo - emissions [WWW document]. Syst. Greenh. Gas emiss. Remov. Estim. 9.14.18 http://plataforma.seeg.eco.br/territories/sao-paulo/card?year=2016, 2016.
Severinghaus, S., Understanding electricity in SimaPro. https://simapro.com/2019/understanding-electricity-in-simapro, 2019.
Silva, A.G.B., Lisboa, I.P., Cherubin, M.R., Cerri, C.E.P., How much sugarcane straw is needed for covering the soil?. BioEnergy Res 12 (2019), 858–864, 10.1007/s12155-019-10008-7.
Smith, P., Haberl, H., Popp, A., Erb, K.H., Lauk, C., Harper, R., Tubiello, F.N., De Siqueira Pinto, A., Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F., Herrero, M., House, J.I., Rose, S., How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Global Change Biol. 19 (2013), 2285–2302, 10.1111/gcb.12160.
Theodor Rudorff, B.F., Canasat - INPE. 8.27.19 http://www.dsr.inpe.br/laf/canasat/tabelas.html, 2014.
Thers, H., Djomo, S.N., Elsgaard, L., Knudsen, M.T., Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel. Sci. Total Environ. 671 (2019), 180–188, 10.1016/j.scitotenv.2019.03.257.
Vandepaer, L., Treyer, K., Mutel, C., Bauer, C., Amor, B., The integration of long-term marginal electricity supply mixes in the ecoinvent consequential database version 3.4 and examination of modeling choices. Int. J. Life Cycle Assess. 24 (2019), 1409–1428, 10.1007/s11367-018-1571-4.
Vélez-Henao, J.A., Garcia-Mazo, C.M., Marginal technology based on consequential life cycle assessment. The case of Colombia. Rev. Fac. Ing., 2019, 51–61, 10.17533/UDEA.REDIN.N90A07.
Wang, Z., Dunn, J.B., Han, J., Wang, M.Q., Effects of co-produced biochar on life cycle greenhouse gas emissions of pyrolysis-derived renewable fuels. Biofuels Bioprod. Biorefining 8 (2014), 189–204, 10.1002/bbb.1447.
Wender, B.A., Foley, R.W., Hottle, T.A., Sadowski, J., Prado-Lopez, V., Eisenberg, D.A., Laurin, L., Seager, T.P., Anticipatory life-cycle assessment for responsible research and innovation. J. Responsible Innov. 1 (2014), 200–207, 10.1080/23299460.2014.920121.
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21 (2016), 1218–1230, 10.1007/s11367-016-1087-8.
Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016 New York.
Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S., Sustainable biochar to mitigate global clmate change. Nat. Commun., 1, 2010, 56, 10.1038/ncomms1053.
Yang, Q., Han, F., Chen, Y., Yang, H., Chen, H., Greenhouse gas emissions of a biomass-based pyrolysis plant in China. Renew. Sustain. Energy Rev. 53 (2016), 1580–1590, 10.1016/j.rser.2015.09.049.
Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., Sabir, M., Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls. Soil Use Manag. 36 (2020), 2–18, 10.1111/sum.12546.
You, S., Ok, Y.S., Chen, S.S., Tsang, D.C.W., Kwon, E.E., Lee, J., Wang, C.-H., A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresour. Technol. 246 (2017), 242–253, 10.1016/j.biortech.2017.06.177.
Zhang, Y., Hu, X., Zou, J., Zhang, D., Chen, W., Liu, Y., Chen, Y., Wang, X., Response of surface albedo and soil carbon dioxide fluxes to biochar amendment in farmland. J. Soils Sediments 18 (2018), 1590–1601, 10.1007/s11368-017-1889-8.