Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6, 42–50 (2016). DOI: 10.1038/nclimate2870
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019). DOI: 10.1038/d41586-019-01026-8
Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650 (2017). DOI: 10.1073/pnas.1710465114
Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science (80-). 368, 580–581 (2020). DOI: 10.1126/science.aba8232
EASAC. Negative emission technologies: What role in meeting Paris Agreement targets? 45. https://easac.eu. Accessed 23 Jan 2019 (2018).
United Nation Decade on Ecosystem Restoration. UN Decade on Restoration. https://www.decadeonrestoration.org/. Accessed 25 May 2021 (2021).
Anderson, C. M. et al. Natural climate solutions are not enough. Science (80-). 363, 933–934 (2019). DOI: 10.1126/science.aaw2741
Ecosia. What is Ecosia? The search engine that plants trees. https://info.ecosia.org/what. Accessed 22 Apr 2021 (2021).
Reforest’Action. Reforest’Action|I plant my forest. https://www.reforestaction.com/en. Accessed 26 June 2020 (2020).
Tree-Nation. Tree-Nation—La plateforme mondiale pour planter des arbres. https://tree-nation.com/. Accessed 26 June 2020 (2020).
Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018). DOI: 10.1186/s13021-018-0110-8
Gold Standard. Gold Standard Afforestation Reforestation (A/R) GHG Emissions Reduction & Sequestration Methodology. Version 1. 18. https://globalgoals.goldstandard.org/wpcontent/uploads/2017/07/401.13-AR-Methodology-V1-1.pdf. Accessed 11 Mar 2020 (2017).
Verra. Methodologies—Verra. https://verra.org/methodologies/. https://verra.org/methodologies/. Accessed 25 May 2021 (2021).
Bragg, D. C. S. Mansourian, D. Vallauri, and N. Dudley (eds.): Forest restoration in landscapes: Beyond planting trees. Landsc. Ecol. 22, 477–479 (2007). DOI: 10.1007/s10980-006-9029-7
Gaboury, S., Boucher, J.-F., Villeneuve, C., Lord, D. & Gagnon, R. Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Québec’s closed-crown boreal forest. For. Ecol. Manage. 257, 483–494 (2009). DOI: 10.1016/j.foreco.2008.09.037
Ecosia. 50! Million! Trees! https://blog.ecosia.org/ecosia-has-planted-50-million-trees/. Accessed 22 Jan 2021 (2019).
Tree-Nation. Tree-Nation—Project: Camino Verde. https://treenation.com/projects/camino-verde/species#header. Accessed 31 Aug 2021 (2021).
Román-Dañobeytia, F. et al. Survival and early growth of 51 tropical tree species in areas degraded by artisanal gold mining in the Peruvian Amazon. Ecol. Eng. 159, 106097 (2021). DOI: 10.1016/j.ecoleng.2020.106097
Coleman, K. & Jenkinson, D. S. RothC—A model for the turnover of carbon in soil Model—Model description and users guide. https://www.rothamsted.ac.uk/sites/default/files/RothC_guide_WIN.pdf. Accessed 20 Sept 2018 (2014).
CINCIA. CINCIA—Centro de Innovación Científica Amazónica. http://cincia.wfu.edu/. Accessed 25 Jan 2021 (2021).
Cabanillas, F., Condori, E. & B., L. L. Restauración de áreas degradadas por la extracción minera aurífera en Madre de Dios. https://cincia.wfu.edu/publicaciones/restauracion-de-areas-degradadas-por-mineria-aurifera-en-madre-de-dios/. Accessed 25 Jan 2021 (2019).
Google. Google Earth Pro. https://www.google.com/earth/download/gep/agree.html. Accessed 5 Mar 2021 (2021).
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://www.ipcc.ch/report/ar5/wg1/. Accessed 9 June 2019 (2014).
PRé Consultants: Life Cycle consultancy and software solutions. SimaPro 8.3. https://www.pre-sustainability.com. Accessed 9 June 2019 (2019).
Myhre, G. et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Jacob, D. et al.) (Cambridge University Press, 2013). 10.3390/jmse6040146. DOI: 10.3390/jmse6040146
Core Team, R. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/. Accessed 23 May 2020 (2020).
Lefebvre, D., Cabanillas, F., Román-Dañobeytia, F., Silman, M. & Fernandez, L. E. Producción y Utilización de Biocarbón. http://cincia.wfu.edu/wp-content/uploads/Nota-Técnica_Biochar-1.pdf. Accessed 11 June 2019 (2018).
Farfan, J. F. Produccion de Plantones en el Vivero Tecnificado de Mazuko Para Recuperar Suelos Degradado por Mineria Aluvial en Madre de Dios. (2020). Unpublished report. Available on demand.
Rugani, B., Panasiuk, D. & Benetto, E. An input–output based framework to evaluate human labour in life cycle assessment. Int. J. Life Cycle Assess. 17, 795–812 (2012). DOI: 10.1007/s11367-012-0403-1
OECD. Purchasing power parities (PPP). https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm. Accessed 19 Oct 2020 (2020).
IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. 11.1–11.54. http://www.ipccnggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf. Accessed 28 Aug 2019 (2006).
Jones, I. L. et al. Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Sci. Total Environ. 697, 133987 (2019). DOI: 10.1016/j.scitotenv.2019.133987
Becknell, J. M., Kissing Kucek, L. & Powers, J. S. Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. For. Ecol. Manage. 276, 88–95 (2012). DOI: 10.1016/j.foreco.2012.03.033
Cerri, C. E. P. et al. Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Sci. Soc. Am. J. 67, 1879–1887 (2003). DOI: 10.2136/sssaj2003.1879
Lefebvre, D. et al. Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Sci. Rep. 10, 19479 (2020). DOI: 10.1038/s41598-020-76470-y
Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019). DOI: 10.1038/s41558-019-0485-x
Csillik, O. & Asner, G. P. Aboveground carbon emissions from gold mining in the Peruvian Amazon. Environ. Res. Lett. 15, 014006 (2020). DOI: 10.1088/1748-9326/ab639c
Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. 107, 16738–16742 (2010). DOI: 10.1073/pnas.1004875107
Messinger, M., Asner, G. & Silman, M. Rapid assessments of Amazon forest structure and biomass using small unmanned aerial systems. Remote Sens. 8, 615 (2016). DOI: 10.3390/rs8080615
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020). DOI: 10.1038/s41586-020-2686-x
Lewis, T. et al. Reforestation of agricultural land in the tropics: The relative contribution of soil, living biomass and debris pools to carbon sequestration. Sci. Total Environ. 649, 1502–1513 (2019). DOI: 10.1016/j.scitotenv.2018.08.351
Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Glob. Change Biol. 25, 3609–3624 (2019). DOI: 10.1111/gcb.14767
Waring, B. G. & Powers, J. S. Overlooking what is underground: Root:shoot ratios and coarse root allometric equations for tropical forests. For. Ecol. Manage. 385, 10–15 (2017). DOI: 10.1016/j.foreco.2016.11.007
Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014). DOI: 10.1038/nature12914
Vance, E. D. & Nadkarni, N. M. Root biomass distribution in a moist tropical montane forest. Plant Soil 142, 31–39 (1992). DOI: 10.1007/BF00010172
Berenguer, E. et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Change Biol. 20, 3713–3726 (2014). DOI: 10.1111/gcb.12627
Ferreira, J. et al. Life cycle assessment of maritime pine wood: A Portuguese case study. J. Sustain. For. 40, 431–445 (2021). DOI: 10.1080/10549811.2020.1768871
Shell. Shell invests in nature as part of broad drive to tackle CO2 emissions. https://www.shell.com/media/news-and-media-releases/2019/shell-invests-in-nature-to-tackle-co2-emissions.html. Accessed 22 Oct 2020 (2019).
Löf, M., Dey, D. C., Navarro, R. M. & Jacobs, D. F. Mechanical site preparation for forest restoration. New For. 43, 825–848 (2012). DOI: 10.1007/s11056-012-9332-x
Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004). DOI: 10.1016/j.envint.2004.03.005
Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017). DOI: 10.1126/sciadv.1701345
Meli, P. et al. A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE 12, e0171368 (2017). DOI: 10.1371/journal.pone.0171368
ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science (80-). 342, 1243092 (2013). DOI: 10.1126/science.1243092
Silva, C. V. J. et al. Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environ. Res. Lett. 15, 114023 (2020). DOI: 10.1088/1748-9326/abb62c
Silva, C. V. J. et al. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos. Trans. R. Soc. Biol. B Sci. 373, 20180043 (2018). DOI: 10.1098/rstb.2018.0043
Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170312 (2018). DOI: 10.1098/rstb.2017.0312
Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020). DOI: 10.1038/s41467-020-18996-3
De Faria, B. L. et al. Model-based estimation of Amazonian forests recovery time after drought and fire events. Forests 12, 8 (2020). DOI: 10.3390/f12010008
de Meira Junior, M. S. et al. The impact of long dry periods on the aboveground biomass in a tropical forest: 20 years of monitoring. Carbon Balance Manag. 15, 12 (2020). DOI: 10.1186/s13021-020-00147-2
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). DOI: 10.1038/s41586-020-2035-0
Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020). DOI: 10.1038/s41467-020-17966-z
Hultberg, T. et al. Ash dieback risks an extinction cascade. Biol. Conserv. 244, 108516 (2020). DOI: 10.1016/j.biocon.2020.108516
Brander, M., Ascui, F., Scott, V. & Tett, S. Carbon accounting for negative emissions technologies. Clim. Policy 21, 699–717 (2021). DOI: 10.1080/14693062.2021.1878009
Li, Y., Li, M., Li, C. & Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 10, 9952 (2020). DOI: 10.1038/s41598-020-67024-3
Gorte, R. W. & Ramseur, J. L. Forest carbon markets: Potential and drawbacks. The Role of Forests in Carbon Capture and Climate Change. www.crs.gov. Accessed 17 Nov 2019 (2008).
De Rosa, M., Schmidt, J., Brandão, M. & Pizzol, M. A flexible parametric model for a balanced account of forest carbon fluxes in LCA. Int. J. Life Cycle Assess. 22, 172–184 (2017). DOI: 10.1007/s11367-016-1148-z
Smith, P. et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 26, 219–241 (2020). DOI: 10.1111/gcb.14815
Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science (80-). 347, 484–485 (2015). DOI: 10.1126/science.347.6221.484-c
Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002). DOI: 10.1046/j.1354-1013.2002.00486.x
Xiao, S. et al. Soil Organic carbon sequestration and active carbon component changes following different vegetation restoration ages on severely eroded red soils in Subtropical China. Forests 11, 1304 (2020). DOI: 10.3390/f11121304
Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009). DOI: 10.1146/annurev.earth.031208.100206