[en] Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as
for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadow- based and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and
the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.
Disciplines :
Physics
Author, co-author :
Puzyrev, Dmitry; Otto von Guericke University > Instute of Physics
Fischer, David; Otto von Guericke University > Institute of Physics
Harth, Kirsten; Otto von Guericke University > Institute of Physics
Trittel, Torsten; Otto von Guericke University > Institute of Physics
Cruz Hidalgo, Raul; Universidad de Navarra > Facultad de Ciencias
Falcon, Eric; Université Paris Diderot - Paris 7 > Matière et Systèmes Complexes
Noirhomme, Martial ; Université de Liège - ULiège > Département de physique > Physique statistique
Opsomer, Eric ; Université de Liège - ULiège > Département de physique > Physique statistique
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Garrabos, Yves; Centre National de la Recherche Scientifique - CNRS
Lecoutre, Carole; Centre National de la Recherche Scientifique - CNRS
Palencia, Fabien; Centre National de la Recherche Scientifique - CNRS
Stannarius, Ralf; Otto von Guericke University > Institute of Physics
Visual analysis of density and velocity profiles in dense 3D granular gases
Publication date :
2021
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Publishing Group, London, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ASE - Agence Spatiale Européenne DLR - Deutsches Zentrum für Luft- und Raumfahrt CNES - Centre National d'Études Spatiales ERDF - European Regional Development Fund
Pöschel, T. Brilliantov, N. V. (eds.) Granular gas dynamics. Lecture Notes in Physics (Springer, Berlin, 2003).
Haff, P. K. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983). DOI: 10.1017/S0022112083003419
Maaß, C. C., Isert, N., Maret, G. & Aegerter, C. M. Experimental investigation of the freely cooling granular gas. Phys. Rev. Lett. 100, 248001 (2008). DOI: 10.1103/PhysRevLett.100.248001
Harth, K., Trittel, T., Wegner, S. & Stannarius, R. Cooling of 3D granular gases in microgravity experiments. EPJ Web Conf Powders Grains 2017 140, 04008 (2017).
Harth, K., Trittel, T., Wegner, S. & Stannarius, R. Free cooling of a granular gas of rodlike particles in microgravity. Phys. Rev. Lett. 120, 214301 (2018). DOI: 10.1103/PhysRevLett.120.214301
Yu, P., Schröter, M. & Sperl, M. Velocity distribution of a homogeneously cooling granular gas. Phys. Rev. Lett. 124, 208007 (2020). DOI: 10.1103/PhysRevLett.124.208007
Grasselli, Y., Bossis, G. & Goutallier, G. Velocity-dependent restitution coefficient and granular cooling in microgravity. EPL 86, 60007 (2009). DOI: 10.1209/0295-5075/86/60007
Tatsumi, S., Murayama, Y., Hayakawa, H. & Sano, M. Experimental study on the kinetics of granular gases under microgravity. J. Fluid Mech. 641, 521–539 (2009). DOI: 10.1017/S002211200999231X
Wang, W.-G., Hou, M.-Y., Chen, K., Yu, P.-D. & Sperl, M. Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity. Chin. Phys. B 27, 84501 (2018). DOI: 10.1088/1674-1056/27/8/084501
Heißelmann, D., Blum, J., Fraser, H. J. & Wolling, K. Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus 206, 424–430 (2010). DOI: 10.1016/j.icarus.2009.08.009
Goldhirsch, I. & Zanetti, G. Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993). DOI: 10.1103/PhysRevLett.70.1619
Brilliantov, N., Saluena, C., Schwager, T. & Pöschel, T. Transient structures in a granular gas. Phys. Rev. Lett. 93, 134301 (2004). DOI: 10.1103/PhysRevLett.93.134301
Paul, S. & Das, S. K. Dynamics of clustering in freely cooling granular fluid. EPL 108, 66001 (2014). DOI: 10.1209/0295-5075/108/66001
Mitrano, P. P., Garzo, V., Hilger, A. M., Ewasko, C. J. & Hrenya, C. M. Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Phys. Rev. E 85, 041303 (2012). DOI: 10.1103/PhysRevE.85.041303
Miller, S. & Luding, S. Cluster growth in two- and three-dimensional granular gases. Phys. Rev. E 69, 031305 (2004). DOI: 10.1103/PhysRevE.69.031305
Luding, S., Huthmann, M., McNamara, S. & Zippelius, A. Homogeneous cooling of rough, dissipative particles: Theory and simulations. Phys. Rev. E 58, 3416–3425 (1998). DOI: 10.1103/PhysRevE.58.3416
Hummel, M., Clewett, J. P. D. & Mazza, M. G. A universal scaling law for the evolution of granular gases. EPL 114, 10002 (2016). DOI: 10.1209/0295-5075/114/10002
Puglisi, A., Loreto, V., Marconi, U. M. B., Petri, A. & Vulpiani, A. Clustering and non-gaussian behavior in granular matter. Phys. Rev. Lett. 81, 3848 (1998). DOI: 10.1103/PhysRevLett.81.3848
McNamara, S. & Young, W. R. Kinetics of a one-dimensional granular medium in the quasielastic limit. Phys. Fluids A 5, 34–45 (1993). DOI: 10.1063/1.858896
Blum, J. & Wurm, G. The growth mechanisms of macroscopic bodies in protoplanetary disks. Ann. Rev. Astron. Astrophys. 46, 21–56 (2008). DOI: 10.1146/annurev.astro.46.060407.145152
Falcon, E. et al. Collision statistics in a dilute granular gas fluidized by vibrations in low gravity. EPL 74, 830–836 (2006). DOI: 10.1209/epl/i2005-10589-8
Falcon, E., Fauve, S. & Laroche, C. Cluster formation, pressure and density measurements in a granular medium fluidized by vibrations. Eur. Phys. J. B 9, 183–186 (1999). DOI: 10.1007/s100510050755
Harth, K. et al. The GAGa project: From the idea to a successful sounding rocket experiment. Proceedings of 20th ESA Symposium on Rocket and Balloon Science (European Space Agency, Hyere, 2011), SP-700, 493–500 (2011).
Harth, K. et al. Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013). DOI: 10.1103/PhysRevLett.110.144102
Harth, K. et al. Microgravity experiments on a granular gas of elongated grains. AIP Conf. Proc. 1542, 807–810 (2013). DOI: 10.1063/1.4812054
Harth, K., Trittel, T., May, K., Wegner, S. & Stannarius, R. Three-dimensional (3D) experimental realization and observation of a granular gas in microgravity. Adv. Space Res. 55, 1901–1912 (2015). DOI: 10.1016/j.asr.2015.01.027
Opsomer, E., Noirhomme, M., Vandewalle, N., Falcon, E. & Merminod, S. Segregation and pattern formation in dilute granular media under microgravity conditions. npj Microgravity 3, 1 (2017). DOI: 10.1038/s41526-016-0009-1
Noirhomme, M. et al. Threshold of gas-like to clustering transition in driven granular media in low-gravity environment. EPL 123, 14003 (2018). DOI: 10.1209/0295-5075/123/14003
Steinpilz, T. et al. Arise: A granular matter experiment on the international space station. Rev. Sci. Instrum. 90, 104503 (2019). DOI: 10.1063/1.5095213
Falcon, E. et al. Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440–443 (1999). DOI: 10.1103/PhysRevLett.83.440
Bannerman, M. N. et al. Movers and shakers: Granular damping in microgravity. Phys. Rev. E 84, 011301 (2011). DOI: 10.1103/PhysRevE.84.011301
Sack, A., Heckel, M., Kollmer, J. E., Zimber, F. & Pöschel, T. Energy dissipation in driven granular matter in the absence of gravity. Phys. Rev. Lett. 111, 018001 (2013). DOI: 10.1103/PhysRevLett.111.018001
Sack, A., Windows-Yule, K., Heckel, M., Werner, D. & Pöschel, T. Granular dampers in microgravity: Sharp transition between modes of operation. Granular Matter 22, 54 (2020). DOI: 10.1007/s10035-020-01017-x
Yu, P. et al. Magnetically excited granular matter in low gravity. Rev. Sci. Instrum. 90, 054501 (2020). DOI: 10.1063/1.5085319
Falcon, E., Bacri, J.-C. & Laroche, C. Equation of state of a granular gas homogeneously driven by particle rotations. EPL 103, 64004 (2013). DOI: 10.1209/0295-5075/103/64004
Falcon, E., Bacri, J.-C. & Laroche, C. Dissipated power within a turbulent flow forced homogeneously by magnetic particles. Phys. Rev. Fluids 2, 102601 (2017). DOI: 10.1103/PhysRevFluids.2.102601
Eshuis, P., van der Weele, J. P., van der Meer, D. & Lohse, D. Granular Leidenfrost effect: Experiment and theory of floating particle clusters. Phys. Rev. Lett. 95, 258001 (2005). DOI: 10.1103/PhysRevLett.95.258001
Wang, H.-Q., Feitosa, K. & Menon, N. Particle kinematics in a dilute, three-dimensional, vibration-fluidized granular medium. Phys. Rev. E 80, 060304 (2009). DOI: 10.1103/PhysRevE.80.060304
Mantle, M. D. et al. MRI investigations of particle motion within a three-dimensional vibro-fluidized granular bed. Powder Technol. 179, 164 (2008). DOI: 10.1016/j.powtec.2007.06.020
Yang, X., Huan, C., Candela, D., Mair, R. & Walsworth, R. L. Measurements of grain motion in a dense, three-dimensional granular fluid. Phys. Rev. Lett. 88, 044301 (2002). DOI: 10.1103/PhysRevLett.88.044301
Wildman, R. D., Huntley, J. D. & Parker, D. J. Granular temperature profiles in three-dimensional vibrofluidized granular beds. Phys. Rev. E 63, 061311 (2005). DOI: 10.1103/PhysRevE.63.061311
Huan, C., Yang, X., Candela, D., Mair, R. W. & Walsworth, R. L. NMR experiments on a three-dimensional vibrofluidized granular medium. Phys. Rev. E 69, 041302 (2004). DOI: 10.1103/PhysRevE.69.041302
Aumaitre, S. et al. An instrument for studying granular media in low-gravity environment. Rev. Sci. Instr. 89, 075103 (2018). DOI: 10.1063/1.5034061
Opsomer, E., Ludewig, F. & Vandewalle, N. Phase transitions in vibrated granular systems in microgravity. Phys. Rev. E 84, 051306 (2011). DOI: 10.1103/PhysRevE.84.051306
Opsomer, E., Ludewig, F. & Vandewalle, N. Dynamical clustering in driven granular gas. EPL 99, 40001 (2012). DOI: 10.1209/0295-5075/99/40001
Noirhomme, M., Ludewig, F., Vandewalle, N. & Opsomer, E. Cluster growth in driven granular gases. Phys. Rev. E 95, 022905 (2017). DOI: 10.1103/PhysRevE.95.022905
Menendez, H. T., Sack, A. & Pöschel, T. Granular Leidenfrost effect in microgravity. Granular Matter 22, 67 (2020). DOI: 10.1007/s10035-020-01040-y
Trittel, T., Harth, K. & Stannarius, R. Mechanical excitation of rodlike particles by a vibrating plate. Phys. Rev. E 95, 062904 (2017). DOI: 10.1103/PhysRevE.95.062904
Largo, S. M. R., Alonso-Marroquin, F., T. Weinhart, T., Luding, S. & Hidalgo, R. C. Homogeneous cooling state of frictionless rod particles. Phys. A 443, 477 – 485 (2016). DOI: 10.1016/j.physa.2015.09.046
Villemot, F. & Talbot, J. Homogeneous cooling of hard ellipsoids. Granular Matter 14, 91–97 (2012). DOI: 10.1007/s10035-012-0322-7
Wright, H. S., Swift, M. R. & King, P. J. Stochastic dynamics of a rod bounding upon a vibrating surface. Phys. Rev. E 74, 061309 (2006). DOI: 10.1103/PhysRevE.74.061309
Weidling, R., Güttler, C. & Blum, J. Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Icarus 218, 688–700 (2012). DOI: 10.1016/j.icarus.2011.10.002
Puzyrev, D., Harth, K., Trittel, T. & Stannarius, R. Machine learning for 3D particle tracking in granular gases. Microgravity Sci. Technol. 32, 897–906 (2020). DOI: 10.1007/s12217-020-09800-4
Wang, Z. et al. Microparticle cloud imaging and tracking for data-driven plasma science. Phys. Plasmas 27, 033703 (2020). DOI: 10.1063/1.5134787
Samsonov, D. et al. Kinetic measurements of shock wave propagation in a three-dimensional complex (dusty) plasma. Phys. Rev. E 67, 036404 (2003). DOI: 10.1103/PhysRevE.67.036404
Wu, Q.-L. et al. Parametric study of the clustering transition in vibration driven granular gas system. Chin. Phys. B 29, 054502 (2020). DOI: 10.1088/1674-1056/ab8217
Pongo, T. Puzyrev, D. Harth, K. Stannarius, R. Hildalgo, R. C. Continuously heated granular gas of elongated particles. EPJ Web of Conferences: Powders and Grains 2021 in press (2021).
Rubio-Largo, S. M., Lind, P. G., Maza, D. & Hidalgo, R. C. Granular gas of ellipsoids: analytical collision detection implemented on GPUs. Comput. Part. Mech. 2, 127–138 (2015). DOI: 10.1007/s40571-015-0042-y
Pöschel, T. & Schwager, T. Computational Granular Dynamics (Springer-Verlag, Berlin, 2005).
Fischer, D., Börzsönyi, T., Nasato, D. S., Pöschel, T. & Stannarius, R. Heaping and secondary flows in sheared granular materials. New J. Phys. 18, 113006 (2016). DOI: 10.1088/1367-2630/18/11/113006
Antypov, D. & Elliott, J. A. On an analytical solution for the damped Hertzian spring. EPL 94, 50004 (2011). DOI: 10.1209/0295-5075/94/50004
How, P., Hulton, N. R. J., Buie, L. & Benn, D. I. PyTrx: A Python-based monoscopic terrestrial photogrammetry toolset for glaciology. Front. Earth Sci. 8, 21 (2020). DOI: 10.3389/feart.2020.00021
How, P. et al. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. Cryosphere 11, 2691–2710 (2017). DOI: 10.5194/tc-11-2691-2017
How, P. et al. Calving controlled by melt-under-cutting: Detailed calving styles revealed through time-lapse observations. Ann. Glaciol. 60, 20–31 (2019). DOI: 10.1017/aog.2018.28
Lucas, B. D. & Kanade, T. An iterative image registration technique with an application to stereo vision. Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2 674-679, (1981).
Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000).
Amon, A. et al. Focus on imaging methods in granular physics. Rev. Sci. Instr. 88, 051701 (2017). DOI: 10.1063/1.4983052