[en] The objective of this study was to evaluate the effects of oral fish cartilage hydrolysate (FCH) on symptoms and joint tissue structure in rat developing osteoarthritis induced surgically. Osteoarthritis was induced in the right knee of mature male Lewis rats (n = 12/group) by surgical transection of the anterior cruciate ligament (ACLT) combined with partial medial meniscectomy (pMMx). Two weeks after surgery, rats were treated orally with either control (sterile H(2)O) or FCH for four weeks. Pain and function were assessed by dynamic weight-bearing test (incapacitance test), electronic Von Frey (EVF; hindpaw allodynia threshold), and pressure algometer (knee allodynia threshold). Time and groups differences at each time point were evaluated using a mixed model. The histological features were evaluated eight weeks after surgery using OARSI score. Mann-Whitney test nonparametric test was applied to compare OARSI score. ACTL/pMMx surgery significantly reduced weight-bearing and increased allodynia and sensitivity thresholds of the operated paw/knee. Globally, FCH improved these parameters faster, but no significant difference between control and FCH groups was observed. Eight weeks after surgery, rats developed moderate OA lesions. Compared with control, FCH did not significantly modify OA lesion severity assessed using the OARSI score. In this mechanically induced OA model, 4 weeks of supplementation with FCH had no significant effect on cartilage lesion, but tends to accelerate pain relief and joint function recovery. This positive trend may have opened the way for further investigation of FCH as potential treatment of joint discomfort associated with OA.
Disciplines :
Rheumatology
Author, co-author :
Henrotin, Yves ; Université de Liège - ULiège > Département des sciences de la motricité > musculoSkeletal Innovative research Lab (mSKIL)
Antoine, Christophe
Zwerts, Elodie
Neutelings, Thibaut
Bouvret, Elodie
Language :
English
Title :
Oral supplementation with fish cartilage hydrolysate accelerates joint function recovery in rat model of traumatic knee osteoarthritis.
Ajeeshkumar, K. K., Vishnu, K. V., Navaneethan, R., Raj, K., Remyakumari, K. R., Swaminathan, T. R., & Sreekanth, G. P. (2019). Proteoglycans isolated from the bramble shark cartilage show potential anti-osteoarthritic properties. Inflammopharmacology, 27(1), 175–187. https://doi.org/10.1007/s10787-018-00554-5
Appleton, C. T., McErlain, D. D., Henry, J. L., Holdsworth, D. W., & Beier, F. (2007). Molecular and histological analysis of a new rat model of experimental knee osteoarthritis. Annals of the New York Academy of Sciences, 1117, 165–174. https://doi.org/10.1196/annals.1402.022.
Boonmaleerat, K., Wanachewin, O., Phitak, T., Pothacharoen, P., & Kongtawelert, P. (2018). Fish Collagen Hydrolysates Modulate Cartilage Metabolism. Cell Biochemistry and Biophysics, 76(1), 279–292. https://doi.org/10.1007/s12013-017-0817-2
Castrogiovanni, P., Trovato, F. M., Loreto, C., Nsir, H., Szychlinska, M. A., & Musumeci, G. (2016). Nutraceutical supplements in the management and prevention of osteoarthritis. International Journal of Molecular Sciences, 17(12), 2042. https://doi.org/10.3390/ijms17122042
Gerwin, N., Bendele, A. M., Glasson, S., & Carlson, C. S. (2010). The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis Cartilage, 18(Suppl 3), S24–34. https://doi.org/10.1016/j.joca.2010.05.030
Helmark, I. C., Mikkelsen, U. R., Børglum, J., Rothe, A., Petersen, M. C. H., Andersen, O., & Kjaer, M. (2010). Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: A randomized controlled trial. Arthritis Research and Therapy, 12(4), R126. https://doi.org/10.1186/ar3064
Hochberg, M. C., Altman, R. D., April, K. T., Benkhalti, M., Guyatt, G., McGowan, J., Towheed, T., Welch, V., Wells, G., & Tugwell, P. (2012). American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care & Research, 64(4), 465–474. https://doi.org/10.1002/acr.21596.
Jevsevar, D. S. (2013). Treatment of osteoarthritis of the knee: Evidence-based guideline. Journal of the American Academy of Orthopaedic Surgeons, 21(9), 571–576. https://doi.org/10.5435/JAAOS-21-09-571
Johnson, V. L., & Hunter, D. J. (2014). The epidemiology of osteoarthritis. Best Practice and Research. Clinical Rheumatology, 28(1), 5–15. https://doi.org/10.1016/j.berh.2014.01.004
Kamekura, S., Hoshi, K., Shimoaka, T., Chung, U., Chikuda, H., Yamada, T., Uchida, M., Ogata, N., Seichi, A., Nakamura, K., & Kawaguchi, H. (2005). Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis and Cartilage, 13(7), 632–641. https://doi.org/10.1016/j.joca.2005.03.004.
Lim, Y. Z., Hussain, M. S., Cicuttini, F., & Wang, Y. (2019). Nutrients and dietary supplements for osteoarthritis. In V. R. P. Ronald Ross Watson (Ed.), Bioactive food as dietary interventions for arthritis and related inflammatory diseases (Vol. 2, pp. 97–137). Elsevier.
Liu, X., Machado, G. C., Eyles, J. P., Ravi, V., & Hunter, D. J. (2018). Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. British Journal of Sports Medicine, 52(3), 167–175. https://doi.org/10.1136/bjsports-2016-097333
Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: A disease of the joint as an organ. Arthritis and Rheumatism, 64(6), 1697–1707. https://doi.org/10.1002/art.34453
McAlindon, T. E., Bannuru, R. R., Sullivan, M. C., Arden, N. K., Berenbaum, F., Bierma-Zeinstra, S. M., & Underwood, M. (2014). OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis and Cartilage, 22(3), 363–388. https://doi.org/10.1016/j.joca.2014.01.003
Michael, J. W., Schluter-Brust, K. U., & Eysel, P. (2010). The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int, 107(9), 152–162. https://doi.org/10.3238/arztebl.2010.0152
Ohnishi, A., Osaki, T., Matahira, Y., Tsuka, T., Imagawa, T., Okamoto, Y., & Minami, S. (2013). Evaluation of the chondroprotective effects of glucosamine and fish collagen peptide on a rabbit ACLT model using serum biomarkers. Journal of Veterinary Medical Science, 75(4), 421–429. https://doi.org/10.1292/jvms.12-0240
Sekar, S., Panchal, S. K., Ghattamaneni, N. K., Brown, L., Crawford, R., Xiao, Y., & Prasadam, I. (2020). Dietary saturated fatty acids modulate pain behaviour in trauma-induced osteoarthritis in rats. Nutrients, 12(2), 509. https://doi.org/10.3390/nu12020509
Wang, X. X., & Cai, L. (2018). Expression level of proteoglycan, collagen and type II collagen in osteoarthritis rat model is promoted and degradation of cartilage is prevented by glucosamine methyl ester. European Review for Medical and Pharmacological Sciences, 22(11), 3609–3616. https://doi.org/10.26355/eurrev_201806_15188
Wen, Z. H., Tang, C. C., Chang, Y. C., Huang, S. Y., Hsieh, S. P., Lee, C. H., & Jean, Y. H. (2010). Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: Association with changes of mitogen-activated protein kinase in chondrocytes. Osteoarthritis and Cartilage, 18(9), 1192–1202. https://doi.org/10.1016/j.joca.2010.05.012