[en] In this article, we present the first climatological map of air–sea CO2 flux over the Baltic Sea based on remote sensing data: Estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude flux estimations. Furthermore, the CO2 fluxes were also estimated using two methods: The method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in fluxes reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic Sea, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6mmolm-2d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1mmolm-2d-1) and the coastal areas act as a larger sink (annual uptake of -4.2mmolm-2d-1) than does the open sea (-4mmolm-2d-1). In its entirety, the Baltic Sea acts as a small source of 1.2mmolm-2d-1 on average and this annual uptake has increased from 1998 to 2012.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Algesten, G., Brydsten, L., Jonsson, P., Kortelainen, P., Löfgren, S., Rahm, L., Räike, A., Sobek, S., Tranvik, L., and Wikner, J. Organic carbon budget for the Gulf of Bothnia. J. Marine Syst. 63, 155-161, 2006.
Alin, S. R., Feely, R. A., Dickson, A. G., Hernández-Ayón, J. M., Juranek, L. W., Ohman, M. D., and Goericke, R. Robust empirical relationships for estimating the carbonate system in the Southern California System and application to CalCOFI hydrographic cruise data (2005-2011). J. Geophys. Res, 117, C05033, https://doi.org/10.1029/2011JC007511, 2012.
Arruda, R., Calil, P. H. R., Bianchi, A. A., Doney, S. C., Gruber, N., Lima, I., and Turi, G. Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean Southwestern Atlantic Ocean: a modeling study. Biogeosciences, 12, 5793-5809, https://doi.org/10.5194/bg-12-5793-2015, 2015.
Backer, H., and Leppänen, J.-M. M. The HELCOM system of a vision. strategic goals and ecological objectives: implementing an ecosystem approach to the management of human activities in the Baltic Sea, Aquat. Conserv. 18, 321-334, 2008.
Bentamy, A., and Croizé-Fillon, D. Reprocessing Daily QuikSCAT Surface Wind Fields. Tech. rep., Ifremer, Brest, 2013.
Bergstrom, S. River runoff to the Baltic Sea: 1950-1990. Ambio, 23, 280-287, 1994.
Borges, A. V., and Frankignoulle, M. Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochemistry, 59, 41-67, 2002.
Borges, A. V., Djenidi, S., Lacroix, G., Théate, J., Delille, B., and Frankignoulle, M. Atmospheric CO2 flux from mangrove surrounding waters. Geophys. Res. Lett. 30, https://doi.org/10.1029/2003GL017143, 2003.
Bourgeois, T., Orr, J. C., Resplandy, L., Terhaar, J., Ethé, C., Gehlen, M., and Bopp, L. Coastal-ocean uptake of anthropogenic carbon. Biogeosciences, 13, 4167-4185, https://doi.org/10.5194/bg-13-4167-2016, 2016.
Cai, W.-J., Wang, Z. A., andWang, Y. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere. the land-sea interface and the ocean, Geophys. Res. Lett. 30, https://doi.org/10.1029/2003GL017633, 2003.
Canadell, J. G. Global Carbon Project: Science framework and Implementation. edited by: Canadell, J. G., Dickson, R., Hibbard, K., Raupach, M., and Young, O., Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No. 1, Global Carbon Project Report No. 1, 69 pp., Canberra, 2003.
Chen, C.-T. A., and Wang, S.-L. Carbon. alkalinity and nutrient budgets on the East China Sea continental shelf, J. Geophys. Res.-Oceans, 104, 20675-20686, 1999.
Chen, C.-T. A., Liu, K.-K. K., and Macdonald, R. Continental margin exchanges. in: Ocean biogeochemistry, Springer, 53-97, 2003.
Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y. Air-sea exchanges of CO2 in the world?s coastal seas. Biogeosciences, 10, 6509-6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
Frankignoulle, M., and Borges, A. V. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochem. Cy. 15, 569-576, 2001.
Gutiérrez-Loza, L., and Ocampo-Torres, F. J. Air-sea CO2 fluxes measured by eddy covariance in a coastal station in Baja California. México, in: IOP Conference Series: Earth and Environmental Science, vol. 35, p. 012012, IOP Publishing, 2016.
Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttilä, M., and Mintrop, L. Distribution. long-Term development and mass balance calculation of total alkalinity in the Baltic Sea, Cont. Shelf Res. 28, 593-601, 2008.
Högström, U. Momentum fluxes and wind gradients in the marine boundary layer-A multi-platform study. Boreal Environ. Res. 13, 475-502, 2008.
Johansson, J. Total and Regional Runoff to the Baltic Sea. Baltic Sea environment fact sheet, available at: http://www.helcom. fi/baltic-sea-Trends/environment-fact-sheets/, last access: April 2017.
Jolliffe, I. T. Principal component analysis. Springer, New York, 2002.
Kohonen, T. The self-organizing map. Proceedings of the IEEE, 78, 1464-1480, 1990.
Krasakopoulou, E., Rapsomanikis, S., Papadopoulos, A., and Papathanassiou, E. Partial pressure and air-sea CO2 flux in the Aegean Sea during February 2006. Cont. Shelf Res. 29, 1477-1488, 2009.
Kulinski, K., and Pempkowiak, J. Carbon cycling in the Baltic Sea. vol. 6, Springer, 2012.
Lansø, A. S., Bendtsen, J., Christensen, J. H., Sørensen, L. L., Chen, H., Meijer, H. A. J., and Geels, C. Sensitivity of the air-sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short-Term variability. Biogeosciences, 12, 2753-2772, https://doi.org/10.5194/bg-12-2753-2015, 2015.
Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL043691, 2010.
Lehmann, A., and Myrberg, K. Upwelling in the Baltic Sea a review. J. Marine Syst. 74, S3-S12, 2008.
Lenton, A., Tilbrook, B., Law, R. M., Bakker, D., Doney, S. C., Gruber, N., Ishii, M., Hoppema, M., Lovenduski, N. S., Matear, R. J., McNeil, B. I., Metzl, N., Mikaloff Fletcher, S. E., Monteiro, P. M. S., Rödenbeck, C., Sweeney, C., and Takahashi, T. Sea-Air CO2 fluxes in the Southern Ocean for the period 1990-2009. Biogeosciences, 10, 4037-4054, https://doi.org/10.5194/bg-10-4037-2013, 2013.
Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O?Brien, K., Olsen, A., Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N. Global Carbon Budget 2015. Earth Syst. Sci. Data, 7, 349-396, https://doi.org/10.5194/essd-7-349-2015, 2015.
Liu, K.-K., Atkinson, L., Chen, C. T. A., Gao, S., Hall, J., Macdonald, R. W., McManus, L. T., and Quinones, R. Exploring continental margin carbon fluxes on a global scale. Eos. Transactions American Geophysical Union, 81, 641-644, 2000.
Liu, K. K., Iseki, K., and Chao, S. Y. Continental margin carbon fluxes. The changing ocean carbon cycle: a midterm synthesis of the Joint Global Ocean Flux Study, 5, 187 pp. 2000.
McGillis, W. R., Edson, J. B., Ware, J. D., Dacey, J. W., Hare, J. E., Fairall, C. W., and Wanninkhof, R. Carbon dioxide flux techniques performed during GasEx-98. Mar. Chem. 75, 267-280, 2001.
Meier, H. E. M., Rutgersson, A., and Reckermann, M. An Earth System Science Program for the Baltic Sea Region. Eos. Transactions American Geophysical Union, 95, 109-110, 2014.
Myrberg, K., and Andrejev, O. Main upwelling regions in the Baltic Sea-A statistical analysis based on three-dimensional modelling. Boreal Environ. Res. 8, 97-112, 2003.
Norman, M. Air-Sea Fluxes of CO2: Analysis Methods and Impact on Carbon Budget. 2013.
Norman, M., Raj Parampil, S., Rutgersson, A., and Sahlée, E. Influence of coastal upwelling on the air-sea gas exchange of CO2 in a Baltic Sea Basin. Tellus B, 65, 1-16, https://doi.org/10.3402/tellusb.v65i0.21831, 2013.
Norman, M., Rutgersson, A., and Sahlée, E. Impact of improved air-sea gas transfer velocity on fluxes and water chemistry in a Baltic Sea model. J. Marine Syst. 111, 175-188, https://doi.org/10.1016/j.jmarsys.2012.10.013, 2013.
Omstedt, A., Elken, J., Lehmann, A., and Piechura, J. Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog. Oceanogr. 63, 1-28, 2004.
Omstedt, A., Gustafsson, E., andWesslander, K. Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Cont. Shelf Res. 29, 870-885, 2009.
Parard, G., Charantonis, A. A., and Rutgerson, A. Remote sensing algorithm for sea surface CO2 in the Baltic Sea. Biogeoscience Discuss. 11, 12255-12294, https://doi.org/10.5194/bgd-11-12255-2014, 2014.
Parard, G., Charantonis, A. A., and Rutgerson, A. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology. Biogeosciences, 12, 3369-3384, https://doi.org/10.5194/bg-12-3369-2015, 2015.
Parard, G., Charantonis, A. A., and Rutgersson, A. Using satellite data to estimate partial pressure of CO2 in the Baltic Sea. J. Geophys. Res.-Biogeo. 121, 1002-1015, 2016.
Parard, G., Rutgerson, A., and Charantonis, A. A. Remote Sensing data to estimate pCO2 and Air-Sea CO2 exchange. ECDS, https://ecds.se/dataset/remote-sensing-data-To-estimate-pco2-And-Air-sea-co2-exchange, last access: November 2017.
Ribas-Ribas, M., Gómez-Parra, A., and Forja, J. M. Air-sea CO2fluxes in the north-eastern shelf of the Gulf of Cádiz (Southwest Iberian Peninsula). Mar. Chem. 123, 56-66, 2011.
Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and Heimann, M. Global surface-ocean pCO2 and sea-Air CO2 flux variability from an observationdriven ocean mixed-layer scheme. Ocean Sci. 9, 193-216, https://doi.org/10.5194/os-9-193-2013, 2013.
Rutgersson, A., and Smedman, A. Enhanced air sea CO2 transfer due to water-side convection. J. Marine Syst. 80, 125-134, https://doi.org/10.1016/j.jmarsys.2009.11.004, 2009.
Rutgersson, A., Norman, M., Schneider, B., Pettersson, H., and Sahlée, E. The annual cycle of carbon dioxide and parameters influencing the air-sea carbon exchange in the Baltic Proper. J. Marine Syst. 74, 381-394, https://doi.org/10.1016/j.jmarsys.2008.02.005, 2008.
Rutgersson, A., Norman, M., and Aström, G. Atmospheric CO2 variation over the Baltic Sea and the impact on air-sea exchange. Boreal Environ. Res. 14, 238-249, 2009.
Sasse, T. P., McNeil, B. I., and Abramowitz, G. A novel method for diagnosing seasonal to inter-Annual surface ocean carbon dynamics from bottle data using neural networks. Biogeosciences, 10, 4319-4340, https://doi.org/10.5194/bg-10-4319-2013, 2013.
Schneider, B. The CO2 system of the Baltic Sea: Biogeochemical control and impact of anthropogenic CO2. in: Global Change and Baltic Coastal Zones, Springer, 33-49, 2011.
Schneider, B., Gülzow, W., Sadkowiak, B., and Rehder, G. Detecting sinks and sources of CO2 and CH4 by ferrybox-based measurements in the Baltic Sea: Three case studies. J. Marine Syst. 140, 13-25, 2014.
Schneider, B., Buecker, S., Kaitala, S., Maunula, P., and Wasmund, N. Characteristics of the spring/summer production in the Mecklenburg Bight (Baltic Sea) as revealed by long-Term pCO2 data. Oceanologia, 57, 375-385, 2015.
Siegel, H., and Gerth, M. Baltic Sea environment fact sheet Sea Surface Temperature in the Baltic Sea in 2011. HELCOM Baltic Sea Environment Fact Sheets, available at: http://www.helcom. fi/baltic-sea-Trends/environment-fact-sheets/ (last access: April 2017), 2012.
Smith, S. D., Fairall, C. W., Geernaert, G. L., and Hasse, L. Air-sea fluxes: 25 years of progress. Bound.-Lay. Meteorol. 78, 247-290, 1996.
Soci, C., Landelius, T., Bazile, E., Undén, P., Mahfouf, J. F., Martin, E., and Besson, F. EURO4M Project-REPORT. 2011.
Sproson, D., and Sahlée, E. Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer. Tellus A, 66, https://doi.org/10.3402/tellusa.v66.24041, 2014.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y. Global sea-Air CO2 flux based on climatological surface ocean pCO2., and seasonal biological and temperature effects, Deep Sea Res. Pt. II, 49, 1601-1622, 2002.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A. O., Tilbrook, B., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R. R., and De Baar, H. J. W. Climatological mean and decadal change in surface ocean pCO2., and net sea-Air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554-577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Thomas, H., and Schneider, B. The seasonal cycle of carbon dioxide in Baltic Sea surface waters. J. Marine Syst. 22, 53-67, https://doi.org/10.1016/S0924-7963(99)00030-5, 1999.
Thomas, H., Ittekkot, V., Osterroht, C., and Schneider, B. Preferential recycling of nutrientsthe ocean?s way to increase new production and to pass nutrient limitation?. Limnol. Oceanogr. 44, https://doi.org/10.4319/lo.1999.44.8.1999, 1999.
Thomas, H., Bozec, Y., Elkalay, K., and de Baar, H. J. W. Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304, 1005-1008, https://doi.org/10.1126/science.1095491, 2004.
Tsunogai, S., Watanabe, S., and Sato, T. Is there a continental shelf pump for the absorption of atmospheric CO2?. Tellus B, 51, 701-712, 1999.
Vargas, R., Loescher, H. W., Arredondo, T., Huber-Sannwald, E., Lara-Lara, R., and Yépez, E. A. Opportunities for advancing carbon cycle science in Mexico: Toward a continental scale understanding. Environ. Sci. Policy, 21, 84-93, 2012.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R. Advances in quantifying air-sea gas exchange and environmental forcing. Ann. Rev. Mar. Sci. 1, 213-244, https://doi.org/10.1146/annurev.marine.010908.163742, 2009.
Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., and Khatiwala, S. Global ocean carbon uptake: magnitude. variability and trends, Biogeosciences, 10, 1983-2000, https://doi.org/10.5194/bg-10-1983-2013, 2013.
Weiss, R. F., Jahnke, R. A., and Keeling, C. D. Seasonal effects of temperature and salinity on the partial pressure of CO2 in seawater. Nature, 300, 511-513, 1982.
Wesslander, K. The carbon dioxide system in the Baltic Sea surface waters. PhD thesis, University of Gothenburg, 2011.
Wesslander, K., Omstedt, A., and Schneider, B. Inter-Annual variation of the air-sea CO2 balance in the Southern Baltic Sea and the Kattegat. Cont. Shelf Res. 1511-1521, https://doi.org/10.1016/j.csr.2010.05.014, 2010.
Wollast, R. The coastal organic carbon cycle: fluxes. sources and sinks, Ocean margin processes in global change, 365-381, 1991.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.