[en] Endometriosis is defined as endometrial-like tissue outside the uterine cavity. It is a chronic inflammatory estrogen-dependent disease causing pain and infertility in about 10% of women of reproductive age. Treatment nowadays consists of medical and surgical therapies. Medical treatments are based on painkillers and hormonal treatments. To date, none of the medical treatments have been able to cure the disease and symptoms recur as soon as the medication is stopped. The development of new biomedical targets, aiming at the cellular and molecular mechanisms responsible for endometriosis, is needed. This article summarizes the most recent medications under investigation in endometriosis treatment with an emphasis on non-coding RNAs that are emerging as key players in several human diseases, including cancer and endometriosis.
Disciplines :
Reproductive medicine (gynecology, andrology, obstetrics)
Author, co-author :
Brichant, Géraldine ; Université de Liège - ULiège > Département des sciences cliniques > Gynécologie - Obstétrique
Jamali, N.; Zal, F.; Mostafavi-Pour, Z.; Samare-Najaf, M.; Poordast, T.; Dehghanian, A. Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats. Reprod. Sci. 2021, 28, 683–692, doi:10.1007/s43032020-00377-2.
Miller, J.E.; Ahn, S.H.; Monsanto, S.P.; Khalaj, K.; Koti, M.; Tayade, C. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget 2016, 8, 7138–7147, doi:10.18632/oncotarget.12577.
Becker, C.M.; Gattrell, W.; Gude, K.; Singh, S.S. Reevaluating response and failure of medical treatment of endometriosis: A systematic review. Fertil. Steril. 2017, 108, 125–136, doi:10.1016/j.fertnstert.2017.05.004.
Brichant, G.; Nervo, P.; Albert, A.; Munaut, C.; Foidart, J.-M.; Nisolle, M. Heterogeneity of estrogen receptor α and progesterone receptor distribution in lesions of deep infiltrating endometriosis of untreated women or during exposure to various hormonal treatments. Gynecol. Endocrinol. 2018, 34, 651–655, doi:10.1080/09513590.2018.1433160.
Bedaiwy, M.A.; Alfaraj, S.; Yong, P.; Casper, R. New developments in the medical treatment of endometriosis. Fertil. Steril. 2017, 107, 555–565, doi:10.1016/j.fertnstert.2016.12.025.
Van Langendonckt, A.; Casanas-Roux, F.; Fau-Donnez, J.; Donnez, J. Oxidative stress and peritoneal endometriosis. Fertil. Steril. 2002, 77, 861–870
Santanam, N.; Murphy, A.A.; Parthasarathy, S. Macrophages, oxidation, and endometriosis. Ann. N.Y. Acad. Sci. 2002, 955, 183– 198.
Sampson, J.A. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the pelvic cavity. Am. J. Obstet. Gynecol. 1927, 14, 422–469.
Barra, F.; Ferrero, S. Adhesion proteins: Suitable therapeutic targets or biomarkers of therapy response for endometriosis? Acta Obstet. Gynecol. Scand. 2019, 98, 810–811, doi:10.1111/aogs.13533.
Pitsos, M.; Kanakas, N. The role of matrix metalloproteinases in the pathogenesis of endometriosis. Reprod. Sci. 2009, 16, 717– 726, doi:10.1177/1933719109333661.
Ezzati, M.; Carr, B.R. Elagolix a novel, orally bioavailable GnRH antagonist under investigation for the treatment of endometriosis-related pain. Women’s Health 2015, 11, 19–28, doi:10.2217/whe.14.68.
Vercellini, P.; Viganò, P.; Somigliana, E.; Fedele, L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014, 10, 261–275, doi:10.1038/nrendo.2013.255.
Reis, F.M.; Coutinho, L.M.; Vannuccini, S.; Batteux, F.; Chapron, C.; Petraglia, F. Progesterone receptor ligands for the treatment of endometriosis: The mechanisms behind therapeutic success and failure. Hum. Reprod. Update 2020, 26, 565–585, doi:10.1093/humupd/dmaa009.
Nisolle, M.; Donnez, J. Reprint of: Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil. Steril. 2019, 112, e125–e136, doi:10.1016/j.fertnstert.2019.08.081.
Tosti, C.; Pinzauti, S.; Santulli, P.; Chapron, C.; Petraglia, F. Pathogenetic mechanisms of deep infiltrating endometriosis. Reprod. Sci. 2015, 22, 1053–1059, doi:10.1177/1933719115592713.
Bernacchioni, C.; Capezzuoli, T.; Vannuzzi, V.; Malentacchi, F.; Castiglione, F.; Cencetti, F.; Ceccaroni, M.; Donati, C.; Bruni, P.; Petraglia, F. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: Possible implication in transforming growth factor β–induced fibrosis. Fertil. Steril. 2021, 115, 501–511, doi:10.1016/j.fertnstert.2020.08.012.
Massarotti, C.; Badenier, I.M.; Paudice, M.; Scaglione, G.; Remorgida, V.; Vellone, V.G. Steroids receptors immunohistochemical expression in different sites of endometriosis. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 101861, doi:10.1016/j.jogoh.2020.101861.
Evans, J.R.; Feng, F.Y.; Chinnaiyan, A.M. The bright side of dark matter: lncRNAs in cancer. J. Clin. Investig. 2016, 126, 2775– 2782, doi:10.1172/jci84421.
Kiss, T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001, 20, 3617–3622, doi:10.1093/emboj/20.14.3617.
Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166, doi:10.1146/annurev-biochem-051410-092902.
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338, doi:10.1038/nature11928.
Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell Mol. Life Sci. 2018, 75, 467–484, doi:10.1007/s00018-017-2626-6.
Aljubran, F.; Nothnick, W.B. Long non-coding RNAs in endometrial physiology and pathophysiology. Mol. Cell Endocrinol. 2021, 525, 111190, doi:10.1016/j.mce.2021.111190.
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222, doi:10.1038/nrd.2016.246.
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. An RNAi Therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018, 379, 11–21.
Balwani, M.; Sardh, E.; Ventura, P.; Peiró, P.A.; Rees, D.C.; Stölzel, U.; Bissell, D.M.; Bonkovsky, H.L.; Windyga, J.; Anderson, K.E.; et al. Phase 3 Trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 2020, 382, 2289–2301, doi:10.1056/nejmoa1913147.
Garrelfs, S.F.; Frishberg, Y.; Hulton, S.A.; Koren, M.J.; O’Riordan, W.D.; Cochat, P.; Deschênes, G.; Shasha-Lavsky, H.; Saland, J.M.; Hoff, W.G.V.; et al. Lumasiran, an RNAi Therapeutic for primary hyperoxaluria type. N. Engl. J. Med. 2021, 384, 1216–1226, doi:10.1056/nejmoa2021712.
Adammek, M.; Greve, B.; Kässens, N.; Schneider, C.; Brüggemann, K.; Schüring, A.N.; Starzinski-Powitz, A.; Kiesel, L.; Götte, M. MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil. Steril. 2013, 99, 1346–1355.e5, doi:10.1016/j.fertnstert.2012.11.055.
Agrawal, S.; Tapmeier, T.T.; Rahmioglu, N.; Kirtley, S.; Zondervan, K.T.; Becker, C.M. The miRNA mirage: How close are we to finding a non-invasive diagnostic biomarker in endometriosis? A systematic review. Int. J. Mol. Sci. 2018, 19, 599, doi:10.3390/ijms19020599.
Hu, W.; Xie, Q.; Xu, Y.; Tang, X.; Zhao, H. Integrated bioinformatics analysis reveals function and regulatory network of miR-200b-3p in endometriosis. BioMed Res. Int. 2020, 2020, 1–7, doi:10.1155/2020/3962953.
Yang, Y.-M.; Yang, W.-X. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2017, 8, 41679– 41689, doi:10.18632/oncotarget.16472.
Pei, T.; Liu, C.; Liu, T.; Xiao, L.; Luo, B.; Tan, J.; Li, X.; Zhou, G.; Duan, C.; Huang, W. MiR-194-3p represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Endocrinology 2018, 159, 2554–2562, doi:10.1210/en.2018-00374.
Joshi, N.R.; Miyadahira, E.H.; Afshar, Y.; Jeong, J.-W.; Young, S.L.; Lessey, B.A.; Serafini, P.C.; Fazleabas, A.T. Progesterone resistance in endometriosis is modulated by the altered expression of microRNA-29c and FKBPJ. Clin. Endocrinol. Metab. 2016, 102, 141–149, doi:10.1210/jc.2016-2076.
Zhou, M.; Fu, J.; Xiao, L.; Yang, S.; Song, Y.; Zhang, X.; Feng, X.; Sun, H.; Xu, W.; Huang, W. MiR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Hum. Reprod. 2016, 31, 2598–2608, doi:10.1093/humrep/dew223.
Cosar, E.; Mamillapalli, R.; Ersoy, G.S.; Cho, S.; Seifer, B.; Taylor, H.S. Serum microRNAs as diagnostic markers of endometriosis: A comprehensive array-based analysis. Fertil. Steril. 2016, 106, 402–409, doi:10.1016/j.fertnstert.2016.04.013.
Nematian, E.S.; Mamillapalli, R.; Kadakia, T.S.; Zolbin, M.M.; Moustafa, S.; Taylor, H.S. Systemic inflammation induced by microRNAs: Endometriosis-derived alterations in circulating microRNA 125b-5p and Let-7b-5p regulate macrophage cytokine production. J. Clin. Endocrinol. Metab. 2018, 103, 64–74, doi:10.1210/jc.2017-01199.
Wang, X.; Zhang, J.; Liu, X.; Wei, B.; Zhan, L. Long noncoding RNAs in endometriosis: Biological functions, expressions, and mechanisms. J. Cell Physiol. 2021, 236, 6–14, doi:10.1002/jcp.29847.
Yan, W.; Hu, H.; Tang, B. Progress in understanding the relationship between long noncoding RNA and endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 5, 100067, doi:10.1016/j.eurox.2019.100067.
Kopp, F.; Mendell, J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018, 172, 393–407, doi:10.1016/j.cell.2018.01.011.
Ghazal, S.; McKinnon, B.; Zhou, J.; Mueller, M.; Men, Y.; Yang, L.; Mueller, M.; Flannery, C.; Huang, Y.; Taylor, H.S H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol. Med. 2015, 7, 996– 1003, doi:10.7892/boris.77691.
Liu, S.; Qiu, J.; Tang, X.; Cui, H.; Zhang, Q.; Yang, Q. LncRNA-H19 regulates cell proliferation and invasion of ectopic endometrium by targeting ITGB3 via modulating miR-124-3p. Exp. Cell Res. 2019, 381, 215–222.
Xu, Z.; Zhang, L.; Yu, Q.; Zhang, Y.; Yan, L.; Chen, Z.-J. The estrogen-regulated lncRNA H19/miR-216a-5p axis alters stromal cell invasion and migration via ACTA2 in endometriosis. Mol. Hum. Reprod. 2019, 25, 550–561, doi:10.1093/molehr/gaz040.
Liu, S.; Xin, W.; Lu, Q.; Tang, X.; Wang, F.; Shao, W.; Zhang, Y.; Qiu, J.; Hua, K. Knockdown of lncRNA H19 suppresses endometriosis in vivo. Braz. J. Med. Biol. Res. 2021, 54, e10117, doi:10.1590/1414-431x202010117.
Hubé, F.; Guo, J.; Chooniedass-Kothari, S.; Cooper, C.; Hamedani, M.K.; Dibrov, A.A.; Blanchard, A.A.; Wang, X.; Deng, G.; Myal, Y.; et al. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol. 2006, 25, 418–428, doi:10.1089/dna.2006.25.418.
Lin, K.; Zhan, H.; Ma, J.; Xu, K.; Wu, R.; Zhou, C.; Lin, J. Silencing of SRA1 Regulates ER expression and attenuates the growth of stromal cells in ovarian endometriosis. Reprod. Sci. 2016, 24, 836–843, doi:10.1177/1933719116670036.
Bossi, L.; Figueroa-Bossi, N. Competing endogenous RNAs: A target-centric view of small RNA regulation in bacteria. Nat. Rev. Genet. 2016, 14, 775–784, doi:10.1038/nrmicro.2016.129.
Greene, J.; Baird, A.-M.; Brady, L.; Lim, M.; Gray, S.; McDermott, R.; Finn, S. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front. Mol. Biosci. 2017, 4, 38, doi:10.3389/fmolb.2017.00038.
Barrett, S.P.; Salzman, J. Circular RNAs: Analysis, expression and potential functions. Development 2016, 143, 1838–1847, doi:10.1242/dev.128074.
Suzuki, H.; Tsukahara, T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 2014, 15, 9331–9342.
Taylor, H.S.; Giudice, L.C.; Lessey, B.A.; Abrao, M.S.; Kotarski, J.; Archer, D.F.; Diamond, M.P.; Surrey, E.; Johnson, N.P.; Watts, N.B.; et al. Treatment of endometriosis-associated pain with Elagolix, an Oral GnRH antagonist. N. Engl. J. Med. 2017, 377, 28– 40, doi:10.1056/nejmoa1700089.
Dragoman, M.V.; Gaffield, M.E. The safety of subcutaneously administered depot medroxyprogesterone acetate (104 mg/0.65 mL): A systematic review. Contraception 2016, 94, 202–215, doi:10.1016/j.contraception.2016.02.003.
Bernat, A.L.; Oyama, K.; Hamdi, S.; Mandonnet, E.; Vexiau, D.; Pocard, M.; George, B.; Froelich, S. Growth stabilization and regression of meningiomas after discontinuation of cyproterone acetate: A case series of 12 patients. Acta Neurochir. 2015, 157, 1741–1746, doi:10.1007/s00701-015-2532-3.
Schmutz, J.L. Cyproterone acetate and meningioma: The latest findings. Ann. Dermatol. Venereol. 2018, 145, 390–391.
Gezer, A.; Oral, E. Progestin therapy in endometriosis. Women’s Health 2015, 11, 643–652, doi:10.2217/whe.15.42.
Vercellini, P.; Somigliana, E.; Vigano, P.; Abbiati, A.; Daguati, R.; Crosignani, P.G. Endometriosis: Current and future medical therapies. Best Pract. Res. Clin. Obstet. Gynaecol. 2008, 22, 275–306, doi:10.1016/j.bpobgyn.2007.10.001.
Quaas, A.M.; Weedin, E.A.; Hansen, K.R. On-label and off-label drug use in the treatment of endometriosis. Fertil. Steril. 2015, 103, 612–625, doi:10.1016/j.fertnstert.2015.01.006.
Soares, S.R.; Martínez-Varea, A.; Hidalgo-Mora, J.J.; Pellicer, A. Pharmacologic therapies in endometriosis: A systematic review. Fertil. Steril. 2012, 98, 529–555, doi:10.1016/j.fertnstert.2012.07.1120.
Olive, D.L. Gonadotropin-releasing hormone agonists for endometriosis. N. Engl. J. Med. 2008, 359, 1136–1142, doi:10.1056/nejmct0803719.
Küpker, W.; Felberbaum, R.; Krapp, M.; Schill, T.; Malik, E.; Diedrich, K. Use of GnRH antagonists in the treatment of endometriosis. Reprod. Biomed. 2002, 5, 12–16, doi:10.1016/s1472-648361590-8.
Barbieri, R.L. Hormone treatment of endometriosis: The estrogen threshold hypothesis. Am. J. Obstet. Gynecol. 1992, 166, 740– 745.
Struthers, R.S.; Nicholls, A.J.; Grundy, J.; Chen, T.; Jimenez, R.; Yen, S.S.C.; Bozigian, H.P. Suppression of gonadotropins and estradiol in premenopausal women by oral administration of the nonpeptide gonadotropin-releasing hormone antagonist Elagolix. J. Clin. Endocrinol. Metab. 2009, 94, 545–551, doi:10.1210/jc.2008-1695.
Diamond, M.P.; Carr, B.; Dmowski, W.P.; Koltun, W.; O’Brien, C.; Jiang, P.; Burke, J.; Jimenez, R.; Garner, E.; Chwalisz, K. Elagolix treatment for endometriosis-associated pain: Results from a phase 2, randomized, double-blind, placebo-controlled study. Reprod. Sci. 2014, 21, 363–371.
Surrey, E.; Taylor, H.S.; Giudice, L.; Lessey, B.A.; Abrao, M.S.; Archer, D.F.; Diamond, M.P.; Johnson, N.P.; Watts, N.B.; Gallagher, J.C; et al. Long-term outcomes of Elagolix in women with endometriosis: Results from two extension studies. Obstet. Gynecol. 2018, 132, 147–160.
Riccio, L.G.C.; Jeljeli, M.; Santulli, P.; Chouzenoux, S.; Doridot, L.; Nicco, C.; Reis, F.M.; Abrão, M.S.; Chapron, C.; Batteux, F. B lymphocytes inactivation by Ibrutinib limits endometriosis progression in mice. Hum. Reprod. 2019, 34, 1225–1234, doi:10.1093/humrep/dez071.
Pellicer, N.; Galliano, D.; Herraiz, S.; Bagger, Y.Z.; Arce, J.-C.; Pellicer, A. Use of dopamine agonists to target angiogenesis in women with endometriosis. Hum. Reprod. 2021, 36, 850–858, doi:10.1093/humrep/deaa337.
Delgado-Rosas, F.; Gómez, R.; Ferrero, H.; Gaytan, F.; Garcia-Velasco, J.; Simon, C.; Pellicer, A. The effects of ergot and non-ergot-derived dopamine agonists in an experimental mouse model of endometriosis. Reproduction 2011, 142, 745–755, doi:10.1530/rep-11-0223.
Naqvi, H.; Sakr, S.; Presti, T.; Krikun, G.; Komm, B.; Taylor, H.S. Treatment with Bazedoxifene and Conjugated Estrogens Results in Regression of Endometriosis in a Murine Model. Biol. Reprod. 2014, 90, 121, doi:10.1095/biolreprod.113.114165.
Kulak, J., Jr.; Fischer, C.; Komm, B.; Taylor, H.S. Treatment with bazedoxifene, a selective estrogen receptor modulator, causes regression of endometriosis in a mouse model. Endocrinology 2011, 152, 3226–3232, doi:10.1210/en.2010-1010.
Wang, X.; Mamillapalli, R.; Mutlu, L.; Du, H.; Taylor, H.S. Chemoattraction of bone marrow-derived stem cells towards human endometrial stromal cells is mediated by estradiol regulated CXCL12 and CXCR4 expression. Stem Cell Res. 2015, 15, 14–22, doi:10.1016/j.scr.2015.04.004.
Sakr, S.; Naqvi, H.; Komm, B.; Taylor, H.S. Endometriosis impairs bone marrow-derived stem cell recruitment to the uterus whereas bazedoxifene treatment leads to endometriosis regression and improved uterine stem cell engraftment. Endocrinology 2014, 155, 1489–1497, doi:10.1210/en.2013-1977.
Yao, Z.; Shen, X.; Capodanno, I.; Donnelly, M.; Fenyk-Melody, J.; Hausamann, J.; Nunes, C.; Strauss, J.; Vakerich, K. Validation of rat endometriosis model by using raloxifene as a positive control for the evaluation of Novel SERM compounds. J. Investig. Surg. 2005, 18, 177–183, doi:10.1080/08941930591004412.
Stratton, P.; Sinaii, N.; Segars, J.; Koziol, D.; Wesley, R.; Zimmer, C.; Winkel, C.; Nieman, L.K. Return of chronic pelvic pain from endometriosis after raloxifene treatment: A randomized controlled trial. Obstet. Gynecol. 2008, 111, 88–96.
Altintas, D.; Kokcu, A.; Kandemir, B.; Tosun, M.; Cetinkaya, M.B. Comparison of the effects of raloxifene and anastrozole on experimental endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 150, 84–87, doi:10.1016/j.ejogrb.2010.02.004.
Madauss, K.P.; Stewart, E.L.; Williams, S.P. The evolution of progesterone receptor ligands. Med. Res. Rev. 2007, 27, 374–400, doi:10.1002/med.20083.
Chabbert-Buffet, N.; Meduri, G.; Bouchard, P.; Spitz, I.M. Selective progesterone receptor modulators and progesterone antagonists: Mechanisms of action and clinical applications. Hum. Reprod. Update 2005, 11, 293–307, doi:10.1093/humupd/dmi002.
Donnez, J.; Hudecek, R.; Donnez, O.; Matule, D.; Arhendt, H.-J.; Zatik, J.; Kasilovskiene, Z.; Dumitrascu, M.C.; Fernandez, H.; Barlow, D.H.; et al. Efficacy and safety of repeated use of ulipristal acetate in uterine fibroids. Fertil. Steril. 2015, 103, 519–527, doi:10.1016/j.fertnstert.2014.10.038.
Huniadi, C.A.; Pop, O.L.; Antal, T.A.; Stamatian, F. The effects of ulipristal on Bax/Bcl-2, cytochrome C, Ki-67 and cyclooxygenase-2 expression in a rat model with surgically induced endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 169, 360–365, doi:10.1016/j.ejogrb.2013.03.022.
Liang, B.; Wu, L.; Xu, H.; Cheung, C.W.; Fung, W.Y.; Wong, S.W.; Wang, C.C. Efficacy, safety and recurrence of new progestins and selective progesterone receptor modulator for the treatment of endometriosis: A comparison study in mice. Reprod. Biol. Endocrinol. 2018, 16, 32, doi:10.1186/s12958-018-0347-9.
Kettel, L.M.; Murphy, A.A.; Morales, A.J.; Ulmann, A.; Baulieu, E.E.; Yen, S.S. Treatment of endometriosis with the antiprogesterone mifepristone (RU486). Fertil. Steril. 1996, 65, 23–28, doi:10.1016/s0015-028258022-4.
Mei, L.; Bao, J.; Tang, L.; Zhang, C.; Wang, H.; Sun, L.; Ma, G.; Huang, L.; Yang, J.; Zhang, L.; et al. A novel mifepristone-loaded implant for long-term treatment of endometriosis: In vitro and in vivo studies. Eur. J. Pharm. Sci. 2010, 39, 421–427, doi:10.1016/j.ejps.2010.01.012.
Folkman, J.; Klagsbrun, M. A family of angiogenic peptides. Nat. Cell Biol. 1987, 329, 671–672, doi:10.1038/329671a0.
Becker, C.M.; Wright, R.D.; Satchi-Fainaro, R.; Funakoshi, T.; Folkman, J.; Kung, A.; D’Amato, R.J. A Novel Noninvasive Model of Endometriosis for Monitoring the Efficacy of Antiangiogenic Therapy. Am. J. Pathol. 2006, 168, 2074–2084, doi:10.2353/ajpath.2006.051133.
Hull, M.L.; Charnock-Jones, D.S.; Chan, C.L.K.; Bruner-Tran, K.L.; Osteen, K.G.; Tom, B.D.M.; Fan, T.-P.D.; Smith, S.K. Antiangiogenic agents are effective inhibitors of endometriosis. J. Clin. Endocrinol. Metab. 2003, 88, 2889–2899, doi:10.1210/jc.2002021912.
Ozer, H.; Boztosun, A.; Açmaz, G.; Atılgan, R.; Akkar, O.B.; Kosar, M.I. The Efficacy of Bevacizumab, Sorafenib, and Retinoic Acid on Rat Endometriosis Model. Reprod. Sci. 2012, 20, 26–32, doi:10.1177/1933719112452941.
Hisrich, B.V.; Young, R.B.; Sansone, A.M.; Bowens, Z.; Green, L.J.; Lessey, B.A.; Blenda, A.V. Role of human galectins in inflammation and cancers associated with endometriosis. Biomolecules 2020, 10, 230, doi:10.3390/biom10020230.
De Mattos, R.M.; Machado, D.E.; Perini, J.A.; Alessandra-Perini, J.; Costa, N.D.O.M.D.; Wiecikowski, A.F.D.R.D.O.; Cabral, K.M.D.S.; Takiya, C.M.; Carvalho, R.S.; Nasciutti, L.E. Galectin-3 plays an important role in endometriosis development and is a target to endometriosis treatment. Mol. Cell Endocrinol. 2019, 486, 1–10, doi:10.1016/j.mce.2019.02.007.
Noël, J.-C.; Chapron, C.; Borghese, B.; Fayt, I.; Anaf, V. Galectin-3 is Overexpressed in Various forms of endometriosis. Appl. Immunohistochem. Mol. Morphol. 2011, 19, 253–257, doi:10.1097/pai.0b013e3181f5a05e.
Nisolle, M.; Alvarez, M.L.; Colombo, M.; Foidart, J.M. Pathogenesis of endometriosis. Gynecol. Obstet. Fertil. 2007, 35, 898–903.
Harrison, C. Trial watch: BTK inhibitor shows positive results in B cell malignancies. Nature reviews. Drug Discov. 2012, 11, 96.
Ganieva, U.; Nakamura, T.; Osuka, S.; Bayasula Nakanishi, N.; Kasahara, Y.; Takasaki, N.; Muraoka, A.; Hayashi, S.; Nagai, T.; Murase, T.; et al. Involvement of transcription factor 21 in the pathogenesis of fibrosis in endometriosis. Am. J. Pathol. 2020, 190, 145–157.
Nasu, K.; Tsuno, A.; Hirao, M.; Kobayashi, H.; Yuge, A.; Narahara, H. Heparin is a promising agent for the treatment of endometriosis-associated fibrosis. Fertil. Steril. 2010, 94, 46–51, doi:10.1016/j.fertnstert.2009.02.057.
Lu, D.; Song, H.; Shi, G. Anti-TNF-α treatment for pelvic pain associated with endometriosis. Cochrane Database Syst. Rev. 2013, 3, CD008088, doi:10.1002/14651858.cd008088.pub3.
Liu, H.; Xiong, M.; Xia, Y.-F.; Cui, N.-J.; Lu, R.-B.; Deng, L.; Lin, Y.-H.; Rong, T.-H. Studies on pentoxifylline and tocopherol combination for radiation-induced heart disease in rats. Int. J. Radiat. Oncol. 2009, 73, 1552–1559, doi:10.1016/j.ijrobp.2008.12.005.
Taylor, H.S. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 2004, 292, 81–85, doi:10.1001/jama.292.1.81.
Du, H.; Taylor, H.S. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells 2007, 25, 2082–2086, doi:10.1634/stemcells.2006-0828.
Liu, Y.; Zhang, Z.; Yang, F.; Wang, H.; Liang, S.; Wang, H.; Yang, J.; Lin, J. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis. Biol. Reprod. 2020, 102, 1153–1159, doi:10.1093/biolre/ioaa011.
Liu, Y.; Liang, S.; Yang, F.; Sun, Y.; Niu, L.; Ren, Y.; Wang, H.; He, Y.; Du, J.; Yang, J.; et al. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res. Ther. 2020, 11, 1–17, doi:10.1186/s13287-020-01856-8.
Chen, P.; Mamillapalli, R.; Habata, S.; Taylor, H. Endometriosis stromal cells induce bone marrow mesenchymal stem cell differentiation and PD-1 expression through paracrine signaling. Mol. Cell Biochem. 2021, 476, 1717–1727.
Rahmawati, E.; Yang, W.-C.V.; Lei, Y.-P.; Maurya, P.K.; Chen, H.-W.; Tzeng, C.-R. Gonadotropin-releasing hormone agonist induces downregulation of tensin 1 in women with endometriosis. Acta Obstet. Gynecol. Scand. 2019, 98, 222–231, doi:10.1111/aogs.13481.
Pavone, M.; Malpani, S.; Dyson, M.; Bulun, S. Fenretinide: A potential treatment for endometriosis. Fertil. Steril. 2014, 102, e11, doi:10.1016/j.fertnstert.2014.07.044.
Bruner-Tran, K.L.; Osteen, K.G.; Taylor, H.S.; Sokalska, A.; Haines, K.; Duleba, A.J. Resveratrol inhibits development of experimental endometriosis in vivo and reduces endometrial stromal cell invasiveness in vitro. Biol. Reprod. 2011, 84, 106–112, doi:10.1095/biolreprod.110.086744.