Energy harvesting; Structural nonlinearities; UVLM; Piezoelectricity; Aeroelastic flutter
Abstract :
[en] In this work, we study the non-linear dynamic response of two vertically-arranged aero-piezoelastic harvesters. The numerical framework consists of the following: i) an aerodynamic model based
on the unsteady vortex-lattice method; ii) a three degree-of-freedom lumped-parameter model for each harvester; iii) an inter-model connection to exchange information between models at each time step; and iv) a numerical scheme based on Hamming’s fourth-order predictor–corrector
method to integrate all the governing equations. Particularly, the effect of nonlinear hardening/softening springs on the harvested output power is investigated. Among the results obtained, an interesting finding is that hardening springs yield larger LCO amplitudes and higher harvested power than softening springs.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Roccia, Bruno A.; Universidad Nacional de Rio Cuarto > Grupo de Matematica Aplicada
Verstraete, Marcos L.; Universidad Nacional de Rio Cuarto > Groupo de Matematica Aplicada
Ceballos, Luis R.; Universidad Nacional de Rio Cuarto > Groupo de Matematica Aplicada
Dimitriadis, Grigorios ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Predikman, Sergio; Universidad Nacional de Cordoba > CONICET
Language :
English
Title :
On the Effect of Hardening/Softening Structural Non-linearities on an Array of Aerodynamically Coupled Piezoelectric Harvesters
Publication date :
2022
Event name :
International Symposium on Multibody Systems and Mechatronics
Energy harvesting: What is energy harvesting (2014). http://www.energyharv esting.net/
Abdelkefi, A., Ghommem, M., Nuhait, A., Hajj, M.: Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters. J. Sound Vib. 333(1), 166–177 (2014)
Abdelkefi, A., Nayfeh, A.H., Hajj, M.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67(2), 925–939 (2012). https://doi.org/10.1007/s11071-011-0035-1
Abdelkefi, A., Vasconcellos, R., Marques, F.D., Hajj, M.R.: Bifurcation analysis of an aeroelastic system with concentrated nonlinearities. Nonlinear Dyn. 69(1), 57–70 (2012). https://doi.org/10.1007/s11071-011-0245-6
Afonso, F., Vale, J., Oliveira, É., Lau, F., Suleman, A.: A review on non-linear aeroelasticity of high aspect-ratio wings. Prog. Aerosp. Sci. 89, 40–57 (2017)
Bae, J.S., Inman, D.J.: Aeroelastic characteristics of linear and nonlinear piezoaeroelastic energy harvester. J. Intell. Mater. Syst. Struct. 25(4), 401–416 (2014)
Beltramo, E., Pérez Segura, M.E., Roccia, B.A., Valdez, M.F., Verstraete, M.L., Preidikman, S.: Constructive aerodynamic interference in a network of weakly coupled flutter-based energy harvesters. Aerospace 7(12), 167 (2020)
Bryant, M., Mahtani, R.L., Garcia, E.: Wake synergies enhance performance in aeroelastic vibration energy harvesting. J. Intell. Mater. Syst. Struct. 23(10), 1131– 1141 (2012)
Erturk, A., Vieira, W., De Marqui Jr, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96(18), 184103 (2010)
Eskandary, K., Dardel, M., Pashaei, M.H., Kani, A.M.: Effects of aeroelastic nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. In: Applied Mechanics and Materials, vol. 110, pp. 4297–4306. Trans Tech Publ (2012)
Gilliatt, H.C., Strganac, T.W., Kurdila, A.J.: An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 31(1), 1–22 (2003). https://doi.org/10.1023/A:1022174909705
Hodges, D.H., Pierce, G.A.: Introduction to Structural Dynamics and Aeroelasticity, vol. 15. Cambridge University Press, Cambridge (2011)
Preidikman, S.: Numerical simulations of interactions among aerodynamics. Ph.D. dissertation, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA (1998)
Roccia, B., Verstraete, M., Ceballos, L., Balachandran, B., Preidikman, S.: Computational study on aerodynamically coupled piezoelectric harvesters. J. Intell. Mater. Syst. Struct. 31(13), 1578–1593 (2020)