[en] Organic nanoparticles made out of biodegradable and biocompatible materials have attracted increased attention in the therapeutic and diagnostic fields. In this study, we attempted to explore a new radiolabelling chelating free strategy for biodegradable sphingomyelin nanometric emulsions with fluorine-18 (18F), a radioisotope regularly used in clinic. [18F]fluoride was produced by the cyclotron and was incorporated into 4-[18F]fluorobenzamido-N-ethylmaleimide ([18F]FBEM), which was coupled next to the emulsions previously functionalized with a thiol group, via inclusion of either a thiol-PEG-lipid (SH-PEG12-C18), or a peptide-PEG-lipid (Cys-Pro-IleGlu-Asp-Arg-Pro-Met-Cys-PEG8-C18) derivative. Radiolabelled emulsions were obtained in a rapid and efficient fashion through facile-conjugated chemistry without the use of organic solvents, and characterized in terms of size, polydispersity, surface charge, pH, and osmolarity. PET imaging and biodistribution studies in BALB/c mice allowed obtaining the pharmacokinetics of the radiolabelled emulsions and determining the clearance pathways. Altogether, we confirmed the potential of this new technique for the radiolabelling of lipid-based drug nanosystems for application in PET imaging diagnosis.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Chemistry
Author, co-author :
Nagachinta, Surasa ; Université de Liège - ULiège > GIGA CRC In vivo Imaging
Becker, Guillaume ; Université de Liège - ULiège > Département de Psychologie > Département de Psychologie
Dammicco, Sylvestre ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Radiochemistry
Serrano Navacerrada, Maria Elisa
LEROI, Natacha ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire Cytogénétique
Bahri, Mohamed Ali ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Aging & Memory
Plenevaux, Alain ; Université de Liège - ULiège > GIGA CRC In vivo Imaging - Preclinical Imaging
Lemaire, Christian ; Université de Liège - ULiège > CRC In vivo Imaging-Radiochemistry
Lopez, Rafael
Luxen, André ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
de la Fuente, Maria
Language :
English
Title :
Radiolabelling of lipid-based nanocarriers with fluorine-18 for in vivo tracking by PET.
EACEA - European Education and Culture Executive Agency FEDER - Federación Española de Enfermedades Raras F.R.S.-FNRS - Fonds de la Recherche Scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Montiel Schneider, M.G., Lassalle, V.L., Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed. Pharmacother. 93 (2017), 1098–1115.
Parvanian, S., Mostafavi, S.M., Aghashiri, M., Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens. Bio-Sensing Res. 13 (2017), 81–87.
Lee, C.-N., Wang, Y.-M., Lai, W.-F., Chen, T.-J., Yu, M.-C., Fang, C.-L., Yu, F.-L., Tsai, Y.-H., Chang, W.H.-S., Zuo, C.S., Renshaw, P.F., Super-paramagnetic iron oxide nanoparticles for use in extrapulmonary tuberculosis diagnosis. Clin. Microbiol. Infect. 18 (2012), 149–157.
Giner-Casares, J.J., Henriksen-Lacey, M., Coronado-Puchau, M., Liz-Marzán, L.M., Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Mater. Today 19 (2016), 19–28.
Xu, K., Shi, J., Pourmand, A., Udayakumar, T.S., Dogan, N., Zhao, W., Pollack, A., Yang, Y., Plasmonic optical imaging of gold nanorods localization in small animals. Sci. Rep., 2018, 1–12.
Xing, Y., Zhao, J., Conti, P.S., Chen, K., Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4 (2014), 290–306.
Abou, D.S., Pickett, J.E., Thorek, D.L.J., Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. Br. J. Radiol. 88 (2015), 1–18.
Drobintseva, A.O., Matyushkin, L.B., Aleksandrova, O., Drobintsev, P.D., Kvetnoy, I.M., Mazing, D.S., Moshnikov, V., Polyakova, V.O., Musikhin, S.F., Colloidal CdSe and ZnSe/Mn quantum dots: their cytotoxicity and effects on cell morphology. St. Petersbg. Polytech. Univ. J. Phys. Math. 1 (2015), 272–277.
Lovrić, J., Cho, S.J., Winnik, F.M., Maysinger, D., Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 12 (2005), 1227–1234.
Revia, R.A., Zhang, M., Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances, Mater. Today. 2016.
Cabral, H., Nishiyama, N., Kataoka, K., Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc. Chem. Res. 44 (2011), 999–1008.
Zhu, A., Daniel Lee, A., Shim, H., Metabolic PET imaging in Cancer detection and therapy response. Semin. Oncol. 38 (2011), 55–69.
Jadvar, H., Is There Use for FDG-PET in Prostate Cancer?. Semin. Nucl. Med. 46 (2016), 502–506.
Goel, S., England, C.G., Chen, F., Cai, W., Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv. Drug Deliv. Rev. 113 (2017), 157–176.
Gambhir, S.S., Molecular imaging of Cancer with positron emission tomography. Nature Rev. Cancer 2 (2002), 683–693.
Wong, A.W., Ormsby, E., Zhang, H., Seo, J.W., Mahakian, L.M., Caskey, C.F., Ferrara, K.W., A comparison of image contrast with 64Cu-labeled long circulating liposomes and 18F-FDG in a murine model of mammary carcinoma. Am. J. Nucl. Med. Mol. Imaging 3 (2013), 32–43.
Xing, Y., Zhao, J., Shi, X., Conti, P.S., Chen, K., Recent development of radiolabeled nanoparticles for PET imaging. Austin J. Nanomed. Nanotechnol., 2, 2014, 1016.
Guo, J., Hong, H., Chen, G., Shi, S., Zheng, Q., Zhang, Y., Theuer, C.P., Barnhart, T.E., Cai, W., Gong, S., Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials 34 (2013), 8323–8332.
Miura, Y., Tsuji, A.B., Sugyo, A., Sudo, H., Aoki, I., Inubushi, M., Yashiro, M., Hirakawa, K., Cabral, H., Nishiyama, N., Saga, T., Kataoka, K., Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomater. Sci. Eng. 1 (2015), 1067–1076.
Imlimthan, S., Otaru, S., Keinänen, O., Correia, A., Lintinen, K., Santos, H.A., Airaksinen, A.J., Kostiainen, M.A., Sarparanta, M., Radiolabeled molecular imaging probes for the in vivo evaluation of cellulose nanocrystals for biomedical applications. Biomacromolecules, 2018.
Van Der Born, D., Pees, A., Poot, A.J., Orru, R.V.A., Windhorst, A.D., Vugts, D.J., Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev. 46 (2017), 4709–4773.
Fani, M., Maecke, H.R., Okarvi, S.M., Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2 (2012), 481–501.
Christian, B.T., Lehrer, D.S., Shi, B., Narayanan, T.K., Strohmeyer, P.S., Buchsbaum, M.S., Mantil, J.C., Measuring dopamine neuromodulation in the thalamus: using [F-18]fallypride PET to study dopamine release during a spatial attention task. Neuroimage 31 (2006), 139–152.
Clark, J., O'Hagan, D., Strategies for radiolabelling antibody, antibody fragments and affibodies with fluorine-18 as tracers for positron emission tomography (PET). J. Fluor. Chem. 203 (2017), 31–46.
Schirrmacher, R., Wangler, C., Schirrmacher, E., Recent developments and trends in 18F-Radiochemistry: syntheses and applications. Mini. Rev. Org. Chem. 4 (2007), 317–329.
Cai, W., Zhang, X., Wu, Y., Chen, X., A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of alpha v beta 3 integrin expression. J. Nucl. Med. 47 (2006), 1172–1180.
Toyokuni, T., Walsh, J.C., Dominguez, A., Phelps, M.E., Barrio, J.R., Gambhir, S.S., Satyamurthy, N., Synthesis of a new heterobifunctional linker, N-[4-(Aminooxy)butyl]maleimide, for facile access to a thiol-reactive 18F-Labeling agent. Bioconjug. Chem. 14 (2003), 1253–1259.
M. de la Fuente, R.L. López, B.L. Bouzo, A.J. Vázquez ríos, M.A. nocelo, EUROPEAN PATENT APPLICATION, WO2019138139, Nanosystems as selective vehicles (2018).
Bouzo, B.L., Calvelo, M., Martin, M., García-Fandiño, R., de la Fuente, M., Design and Characterization of Novel Delivery Systems for Advanced Personalized Medicine Following an in Vitro/in Silico Approach. 2020 Submitted.
Dammicco, S., Goux, M., Lemaire, C., Becker, G., Bahri, M.A., Plenevaux, A., Cinier, M., Luxen, A., Regiospecific radiolabelling of Nanofitin on Ni magnetic beads with [18F]FBEM and in vivo PET studies. Nucl. Med. Biol. 51 (2017), 33–39.
Defrise, M., Kinahan, P.E., Townsend, D.W., Michel, C., Sibomana, M., Newport, D.F., Exact and approximate rebinning. IEEE Trans. Med. Imaging 16 (1997), 145–157.
a Bahri, M., Plenevaux, A., Warnock, G., Luxen, A., Seret, A., NEMA NU4-2008 image quality performance report for the microPET focus 120 and for various transmission and reconstruction methods. J. Nucl. Med. 50 (2009), 1730–1738.
Yingchoncharoen, P., Kalinowski, D.S., Richardson, D.R., Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol. Rev. 68 (2016), 701–787.
Mazza, M., Alonso-Sande, M., Jones, M.-C., de la Fuente, M., The potential of nanoemulsions in biomedicine. Fundam. Pharma. Nanosci., 2013, 117–158.
Kelly, K., Alencar, H., Funovics, M., Mahmood, U., Weissleder, R., Detection of invasive Colon Cancer Using a novel, targeted. Library-Derived Fluorescent Peptide, 2004, 6247–6251.
Yang, A., Yang, L., Liu, W., Li, Z., Xu, H., Yang, X., Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int. J. Pharm. 331 (2007), 123–132.
Reimondez-Troitiño, S., González-Aramundiz, J.V., Ruiz-Bañobre, J., López-López, R., Alonso, M.J., Csaba, N., de la Fuente, M., Versatile protamine nanocapsules to restore miR-145 levels and interfere tumor growth in colorectal cancer cells. Eur. J. Pharm. Biopharm. 142 (2019), 449–459.
Mi, Y., Lee, D., Kim, J., Park, H., Jong, W., RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer. J. Control. Release 205 (2015), 172–180.
Shao, S., Zhu, Y., Meng, T., Liu, Y., Hong, Y., Yuan, M., Yuan, H., Hu, F., Targeting high expressed α5β1 integrin in liver metastatic lesions to resist metastasis of colorectal Cancer by RPM peptide-modified chitosan-stearic micelles. Mol. Pharm. 15 (2018), 1653–1663.
Fraga, M., Laux, M., Rejane Dos Santos, G., Zandoná, B., Dos Santos Giuberti, C., De Oliveira, M.C., Da Silveira Matte, U., Ferreira Teixera, H., Evaluation of the toxicity of oligonucleotide/cationic nanoemulsion complexes on Hep G2 cells through MTT assay. Pharmazie 63 (2008), 667–670.
Cheng, D., Liu, Y., Shen, H., Pang, L., Yin, D., Wang, Y., Li, S., Shi, H., F-18 labeled vasoactive intestinal peptide analogue in the PET imaging of colon carcinoma in nude mice. Biomed Res. Int., 2013, 2013.
Stranz, M., Kastango, E.S., A review of pH and osmolarity. Int. J. Pharm. Compd., 2002, 216–220.
Rojas, S., Gispert, J.D., Martín, R., Abad, S., Menchón, C., Pareto, D., Víctor, V.M., Álvaro, M., García, H., Herance, J.R., Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS Nano 5 (2011), 5552–5559.
Rojas, S., Gispert, J.D., Abad, S., Buaki-Sogo, M., Victor, V.M., Garcia, H., Herance, J.R., In vivo biodistribution of amino-functionalized ceria nanoparticles in rats using positron emission tomography. Mol. Pharm. 9 (2012), 3543–3550.
Guerrero, S., Herance, J.R., Rojas, S., Mena, J.F., Gispert, J.D., Acosta, G.A., Albericio, F., Kogan, M.J., Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug. Chem. 23 (2012), 399–408.
Di Mauro, P.P., Gómez-Vallejo, V., Baz Maldonado, Z., Llop Roig, J., Borrós, S., Novel 18F labeling strategy for polyester-based NPs for in vivo PET-CT imaging. Bioconjug. Chem. 26 (2015), 582–592.
Li, J., Wang, X., Zhang, T., Wang, C., Huang, Z., Luo, X., Deng, Y., A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 10 (2014), 81–98.
Yeh, M.K., Chang, H.I., Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 7 (2012), 49–60.
Lamichhane, N., Udayakumar, T.S., D'Souza, W.D., Simone, C.B., Raghavan, S.R., Polf, J., Mahmood, J., Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 23 (2018), 1–17.
Schirrmeister, H., Guhlmann, A., Elsner, K., Kotzerke, J., Glatting, G., Rentschler, M., Neumaier, B., Träger, H., Nüssle, K., Reske, S.N., Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J. Nucl. Med. 40 (1999), 1623–1629.
Zhou, J., Yu, M., Sun, Y., Zhang, X., Zhu, X., Wu, Z., Wu, D., Li, F., Fluorine-18-labeled Gd3+/Yb3+/Er3+co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32 (2011), 1148–1156.
Harper, S., Usenko, C., Hutchison, J.E., Maddux, B.L.S., Tanguay, R.L., In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J. Exp. Nanosci. 3 (2008), 195–206.
Ernsting, M.J., Murakami, M., Roy, A., Li, S.D., Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 172 (2013), 782–794.
Jensen, A.I., Severin, G.W., Hansen, A.E., Fliedner, F.P., Eliasen, R., Parhamifar, L., Kjær, A., Andresen, T.L., Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. J. Control. Release 269 (2018), 100–109.
Sun, X., Yan, X., Jacobson, O., Sun, W., Wang, Z., Tong, X., Xia, Y., Ling, D., Chen, X., Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics 7 (2017), 319–328.
Medina, L.A., Klipper, R., Phillips, W.T., Goins, B., Pharmacokinetics and biodistribution of [111In]-avidin and [99mTc]-biotin-liposomes injected in the pleural space for the targeting of mediastinal nodes. Nucl. Med. Biol. 31 (2004), 41–51.
Blanco, E., Shen, H., Ferrari, M., Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (2015), 941–951.
Rao, L., Xu, J.H., Cai, B., Liu, H., Li, M., Jia, Y., Xiao, L., Guo, S.S., Liu, W., Zhao, X.Z., Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology, 27, 2016, 85106.
Ducongé, F., Pons, T., Pestourie, C., Hérin, L., Thézé, B., Gombert, K., Mahler, B., Hinnen, F., Kühnast, B., Dollé, F., Dubertret, B., Tavitian, B., Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjug. Chem. 19 (2008), 1921–1926.
Bennett, K.M., Zhou, H., Sumner, J.P., Dodd, S.J., Bouraoud, N., Doi, K., Star, R.A., Koretsky, A.P., MRI of the basement membrane using charged nanoparticles as contrast agents. Magn. Reson. Med. 60 (2008), 564–574.
Zuckerman, J.E., Choi, C.H.J., Han, H., Davis, M.E., Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 3137–3142.
Maestrelli, F., González-Rodríguez, M.L., Rabasco, A.M., Ghelardini, C., Mura, P., New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anaesthetics. Int. J. Pharm. 395 (2010), 222–231.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.