Article (Scientific journals)
Estimation of Soil Carbon Input in France: An Inverse Modelling Approach
Meersmans, Jeroen; Martin, M. P.; Lacarce, E. et al.
2013In Pedosphere, 23 (4), p. 422-436
Peer Reviewed verified by ORBi
 

Files


Full Text
Meersmans et al 2013 Pedosphere.pdf
Publisher postprint (615.2 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Climate; Crop types; RothC; Soil organic carbon; Yield; France
Abstract :
[en] Development of a quantitative understanding of soil organic carbon (SOC) dynamics is vital for management of soil to sequester carbon (C) and maintain fertility, thereby contributing to food security and climate change mitigation. There are well-established process-based models that can be used to simulate SOC stock evolution; however, there are few plant residue C input values and those that exist represent a limited range of environments. This limitation in a fundamental model component (i.e., C input) constrains the reliability of current SOC stock simulations. This study aimed to estimate crop-specific and environment-specific plant-derived soil C input values for agricultural sites in France based on data from 700 sites selected from a recently established French soil monitoring network (the RMQS database). Measured SOC stock values from this large scale soil database were used to constrain an inverse RothC modelling approach to derive estimated C input values consistent with the stocks. This approach allowed us to estimate significant crop-specific C input values (P < 0.05) for 14 out of 17 crop types in the range from 1.84 ± 0.69 t C ha-1 year-1 (silage corn) to 5.15 ± 0.12 t C ha-1 year-1 (grassland/pasture). Furthermore, the incorporation of climate variables improved the predictions. C input of 4 crop types could be predicted as a function of temperature and 8 as a function of precipitation. This study offered an approach to meet the urgent need for crop-specific and environment-specific C input values in order to improve the reliability of SOC stock prediction. © 2013 Soil Science Society of China.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Meersmans, Jeroen  ;  Université de Liège - ULiège > Département GxABT > Analyse des risques environnementaux
Martin, M. P.;  French National Institute for Agriculture Research (INRA), InfoSol Unit, Orléans 45075, France
Lacarce, E.;  French National Institute for Agriculture Research (INRA), InfoSol Unit, Orléans 45075, France
Orton, T. G.;  French National Institute for Agriculture Research (INRA), InfoSol Unit, Orléans 45075, France
De Baets, S.;  Earth and Life Institute (ELI), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium, College of Life and Environmental Sciences (CLES), Department of Geography, University of Exeter, Rennes Drive, EX4 4RJ Exeter, United Kingdom
Gourrat, M.;  French National Institute for Agriculture Research (INRA), InfoSol Unit, Orléans 45075, France
Saby, N. P. A.;  French National Institute for Agriculture Research (INRA), InfoSol Unit, Orléans 45075, France
Wetterlind, J.;  French National Institute for Agriculture Research (INRA), InfoSol Unit, Orléans 45075, France
Bispo, A.;  Agriculture and Forestry Department, French Environment and Energy Management Agency (ADEME), Angers 49004, France
Quine, T. A.;  College of Life and Environmental Sciences (CLES), Department of Geography, University of Exeter, Rennes Drive, EX4 4RJ Exeter, United Kingdom
Arrouays, D.;  French National Institute for Agriculture Research (INRA), InfoSol Unit, Orléans 45075, France
Language :
English
Title :
Estimation of Soil Carbon Input in France: An Inverse Modelling Approach
Publication date :
2013
Journal title :
Pedosphere
ISSN :
1002-0160
eISSN :
2210-5107
Publisher :
Soil Science Society of China
Volume :
23
Issue :
4
Pages :
422-436
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
European Commission, EC: FP7-ENV-2008-1-226701, FP7-ENV-2009-1-244122\r\n\r\nAgence de l'Environnement et de la Maîtrise de l'Energie, ADEME
Available on ORBi :
since 08 November 2021

Statistics


Number of views
63 (3 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
29
Scopus citations®
without self-citations
23
OpenCitations
 
22
OpenAlex citations
 
31

Bibliography


Similar publications



Contact ORBi