Peng, J.; Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Wang, A.
Luo, L.; Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Liu, Y.; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, PR 100875, China
Li, H.; Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Hu, Y.; Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Meersmans, Jeroen ; Université de Liège - ULiège > Département GxABT > Analyse des risques environnementaux
Wu, J.; Key Laboratory for Environmental and Urban Sciences, School of Urban Planning & Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
Language :
English
Title :
Spatial identification of conservation priority areas for urban ecological land: An approach based on water ecosystem services
Publication date :
2019
Journal title :
Land Degradation and Development
ISSN :
1085-3278
eISSN :
1099-145X
Publisher :
John Wiley and Sons Ltd
Volume :
30
Issue :
6
Pages :
683-694
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NSCF - National Natural Science Foundation of China
Funding number :
National Natural Science Foundation of China, Grant/Award Number: 41271195
Ajmal, M., Moon, G. W., Ahn, J. H., & Kim, T. W. (2015). Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. Journal of Hydro-Environment Research, 9(4), 592–603. https://doi.org/10.1016/j.jher.2014.11.003
Alberti, M. (1999). Modeling the urban ecosystem: A conceptual framework. Environmental and Planning B, 26(4), 623–646. https://doi.org/10.1007/978-0-387-73412-5_41
Bai, Y., Wong, C. P., Jiang, B., Hughes, A. C., Wang, M., & Wang, Q. (2018). Developing China's Ecological Redline Policy using ecosystem services assessments for land use planning. Nature Communications, 9, 3034. https://doi.org/10.1038/s41467-018-05306-1
Bajocco, S., Angelis, A. D., Perini, L., Ferrara, A., & Salvati, L. (2012). The impact of land use/land cover changes on land degradation dynamics: A Mediterranean case study. Environmental Management, 49, 980–989. https://doi.org/10.1007/s00267-012-9831-8
Bassett, D. R. J. R., Cureton, A. L., & Ainsworth, B. E. (2000). Measurement of daily walking distance-questionnaire versus pedometer. Medicine and Science in Sports and Exercise, 32(5), 1018–1023. https://doi.org/10.1097/00005768-200005000-00021
Bergsten, A., Galafassi, D., & Bodin, Ö. (2014). The problem of spatial fit in social-ecological systems: Detecting mismatches between ecological connectivity and land management in an urban region. Ecology and Society, 19(4), 115–131. https://doi.org/10.5751/ES-06931-190406
Capotorti, G., Vico, E. D., Anzellotti, I., & Celesti-Grapow, L. (2016). Combining the conservation of biodiversity with the provision of ecosystem services in urban green infrastructure planning: Critical features arising from a case study in the metropolitan area of Rome. Sustainability, 9(1), 10. https://doi.org/10.3390/su9010010
Capps, K. A., Bentsen, C. N., & Ramírez, A. (2016). Poverty, urbanization, and environmental degradation: Urban streams in the developing world. Freshwater Science, 35(1), 429–435. https://doi.org/10.1086/684945
Cheng, X., Chen, L., Sun, R., & Kong, P. (2018). Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Science of the Total Environment, 616–617, 376–385. https://doi.org/10.1016/j.scitotenv.2017.10.316
Fan, F., Deng, Y., Hu, X., & Weng, Q. (2013). Estimating composite curve number using an improved SCS-CN method with remotely sensed variables in Guangzhou, China. Remote Sensing, 5(3), 1425–1438. https://doi.org/10.3390/rs5031425
Fan, M., Shibata, H., & Wang, Q. (2016). Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecological Indicators, 62, 1–13. https://doi.org/10.1016/j.ecolind.2015.10.064
Farooqui, T. A., Renouf, M. A., & Kenway, S. J. (2016). A metabolism perspective on alternative urban water servicing options using water mass balance. Water Research, 106, 415–428. https://doi.org/10.1016/j.watres.2016.10.014
Felipe-Lucia, M. R., Comín, F. A., & Bennett, E. M. (2014). Interactions among ecosystem services across land uses in a floodplain agroecosystem. Ecology and Society, 19(1), 360–375. https://doi.org/10.5751/es-06249-190120
Fu, B., Zhao, W., Chen, L., Zhang, Q., Lu, Y., Gulinck, H., & Poesen, J. (2005). Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation and Development, 16, 73–85. https://doi.org/10.1002/ldr.646
Fu, H., & Chen, J. (2017). Formation, features and controlling strategies of severe haze-fog pollutions in China. Science of the Total Environment, 578, 121–138. https://doi.org/10.1016/j.scitotenv.2016.10.201
Galdino, S., Sano, E. E., Andrade, R. G., Grego, C. R., Nogueira, S. F., Bragantini, C., & Flosi, A. H. G. (2016). Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degradation & Development, 27(3), 773–784. http://doi.org/10.1002/ldr.2414. https://doi.org/10.1002/ldr.2414
Gong, M., Fan, Z., Wang, J., Liu, G., & Lin, C. (2017). Delineating the ecological conservation redline based on the persistence of key species: Giant pandas (Ailuropoda melanoleuca) inhabiting the Qinling Mountains. Ecological Modelling, 345(10), 56–62. https://doi.org/10.1016/j.ecolmodel.2016.11.011
Guo, B., Yang, G., Zhang, F., Han, F., & Liu, C. (2018). Dynamic monitoring of soil erosion in the upper Minjiang catchment using an improved soil loss equation based on remote sensing and geographic information system. Land Degradation & Development, 29(3), 521–533. https://doi.org/10.1002/ldr.2882
Kingsford, R. T., Biggs, H. C., & Pollard, S. R. (2011). Strategic adaptive management in freshwater protected areas and their rivers. Biological onservation, 144(4), 1194–1203. https://doi.org/10.1016/j.biocon.2010.09.022
Kinnell, P. I. A. (2010). Runoff dependent erosivity and slope length factors suitable for modelling annual erosion using the Universal Soil Loss Equation. Hydrological Processes, 21(20), 2681–2689. https://doi.org/10.1002/hyp.6493
Kong, F., Sun, C., Liu, F., Yin, H., Jiang, F., Pu, Y., … Dronova, I. (2016). Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy, 183, 1428–1440. https://doi.org/10.1016/j.apenergy.2016.09.070
Li, C., Zheng, H., Li, S., Chen, X., Li, J., Zeng, W., … Daily, G. C. (2015). Impacts of conservation and human development policy across stakeholders and scales. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7396–7401. https://doi.org/10.1073/pnas.1406486112
Li, H., Peng, J., Liu, Y., & Hu, Y. (2017). Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecological Indicators, 82, 50–60. https://doi.org/10.1016/j.ecolind.2017.06.032
Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249–3263. https://doi.org/10.1016/j.rse.2011.07.008
Li, W., Wang, D., Li, H., & Liu, S. (2017). Urbanization-induced site condition changes of peri-urban cultivated land in the black soil region of northeast China. Ecological Indicators, 80, 215–223. https://doi.org/10.1016/j.ecolind.2017.05.038
Li, Y., Sun, X., Zhu, X., & Cao, H. (2010). An early warning method of landscape ecological security in rapid urbanizing coastal areas and its application in Xiamen, China. Ecological Modelling, 221(19), 2251–2260. https://doi.org/10.1016/j.ecolmodel.2010.04.016
Lin, B. B., Egerer, M. H., Liere, H., Jha, S., Bichier, P., & Philpott, S. M. (2018). Local- and landscape-scale land cover affects microclimate and water use in urban gardens. Science of the Total Environment, 610–611, 570–575. https://doi.org/10.1016/j.scitotenv.2017.08.091
Lin, K., Lv, F., Chen, L., Singh, V. P., Zhang, Q., & Chen, X. (2014). Xinanjiang model combined with curve number to simulate the effect of land use change on environmental flow. Journal of Hydrology, 519, 3142–3152. https://doi.org/10.1016/j.jhydrol.2014.10.049
Lin, Q., Mao, J., Wu, J., Li, W., & Yang, J. (2016). Ecological security pattern analysis based on InVEST and least-cost path model: A case study of Dongguan water village. Sustainability, 8(2), 172. https://doi.org/10.3390/su8020172
Liu, Q. Q., Xiang, H., & Singh, V. P. (2010). A simulation model for unified interrill erosion and rill erosion on hillslopes. Hydrological Processes, 20(3), 469–486. https://doi.org/10.1002/hyp.5915
Łopucki, R., & Kiersztyn, A. (2015). Urban green space conservation and management based on biodiversity of terrestrial fauna—A decision support tool. Urban Forestry & Urban Greening, 14(3), 508–518. https://doi.org/10.1016/j.ufug.2015.05.001
Martin-Ortega, J., Ojea, E., & Roux, C. (2013). Payments for water ecosystem services in Latin America: A literature review and conceptual model. Ecosystem Services, 6, 122–132. https://doi.org/10.1016/j.ecoser.2013.09.008
McPhearson, T., Kremer, P., & Hamstead, Z. A. (2013). Mapping ecosystem services in New York City: Applying a social–ecological approach in urban vacant land. Ecosystem Services, 5, 11–26. https://doi.org/10.1016/j.ecoser.2013.06.005
Moore, T. L. C., & Hunt, W. F. (2012). Ecosystem service provision by stormwater wetlands and ponds—A means for evaluation? Water Research, 46(20), 6811–6823. https://doi.org/10.1016/j.watres.2011.11.026
Mulatu, D. W., Veen, A. V. D., & Oel, P. R. V. (2014). Farm households' preferences for collective and individual actions to improve water-related ecosystem services: The Lake Naivasha basin, Kenya. Ecosystem Services, 7(7), 22–33. https://doi.org/10.1016/j.ecoser.2013.12.001
Nakil, M., & Khire, M. (2016). Effect of slope steepness parameter computations on soil loss estimation: Review of methods using GIS. Geocarto International, 31(10), 1078–1093. https://doi.org/10.1080/10106049.2015.1120349
Ng, S. L., Leung, Y. F., Cheung, S. Y., & Fang, W. (2017). Land degradation effects initiated by trail running events in an urban protected area of Hong Kong. Land Degradation & Development, 29, 422–432. http://doi.org/10.1002/ldr.2863
Ólafsdóttir, R., & Júlíusson, Á. D. (2015). Farmers' perception of land-cover changes in NE Iceland. Land Degradation & Development, 11(5), 439–458. https://doi.org/10.1002/1099-145X(200009/10)11:5<439::AID-LDR406>3.0.CO;2-K
Oliveira, E., Tobias, S., & Hersperger, A. M. (2018). Can strategic spatial planning contribute to land degradation reduction in urban regions? State of the art and future research. Sustainability, 10, 949. https://doi.org/10.3390/su10040949
Panagos, P., Borrelli, P., Meusburger, K., Zanden, E. H. V. D., Poesen, J., & Alewell, C. (2015). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23–34. https://doi.org/10.1016/j.envsci.2015.03.012
Peng, J., Pan, Y., Liu, Y., Zhao, H., & Wang, Y. (2018). Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat International, 71, 110–124. https://doi.org/10.1016/j.habitatint.2017.11.010
Peng, J., Yang, Y., Liu, Y., Hu, Y., Du, Y., Meersmans, J., & Qiu, S. (2018). Linking ecosystem services and circuit theory to identify ecological security patterns in Yunnan Province, China. Science of the Total Environment, 644, 781–790. https://doi.org/10.1016/j.scitotenv.2018.06.292
Peng, J., Zhao, M., Guo, X., Pan, Y., & Liu, Y. (2017). Spatial-temporal dynamics and associated driving forces of urban ecological land: A case study in Shenzhen City, China. Habitat International, 60, 81–90. https://doi.org/10.1016/j.habitatint.2016.12.005
Peng, J., Zong, M., Hu, Y. N., Liu, Y., & Wu, J. (2015). Assessing landscape ecological risk in a mining city: A case study in Liaoyuan City, China. Sustainability, 7(7), 8312–8334. https://doi.org/10.3390/su7078312
Polyakov, V., Fares, A., Kubo, D., Jacobi, J., & Smith, C. (2007). Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed. Environmental Modelling & Software, 22(11), 1617–1627. https://doi.org/10.1016/j.envsoft.2006.12.001
Posner, S., Verutes, G., Koh, I., Denu, D., & Ricketts, T. (2016). Global use of ecosystem service models. Ecosystem Services, 17, 131–141. https://doi.org/10.1016/j.ecoser.2015.12.003
Qiu, T., Song, C., & Li, J. (2017). Impacts of urbanization on vegetation phenology over the past three decades in Shanghai, China. Remote Sensing, 9(9), 970. https://doi.org/10.3390/rs9090970
Runfola, D. M., & Pontius, R. G. Jr. (2013). Measuring the temporal instability of land change using the flow matrix. International Journal of Geographical Information Science, 27(9), 1696–1716. https://doi.org/10.1080/13658816.2013.792344
Runfola, D. M., Ratick, S., Blue, J., Machado, E. A., Hiremath, N., Giner, N., … Arnold, J. (2017). A multi-criteria geographic information systems approach for the measurement of vulnerability to climate change. Mitigation and Adaptation Strategies for Global Change, 22, 349–368. https://doi.org/10.1007/s11027-015-9674-8
Snäll, T., Lehtomäki, J., Arponen, A., Elith, J., & Moilanen, A. (2016). Green infrastructure design based on spatial conservation prioritization and modeling of biodiversity features and ecosystem services. Environmental Management, 57(2), 251–256. https://doi.org/10.1007/s00267-015-0613-y
Taye, G., Vanmaercke, M., Poesen, J., Wesemael, B. V., Tesfaye, S., Teka, D., … Haregeweyn, N. (2017). Determining RUSLE P- and C-factors for stone bunds and trenches in rangeland and cropland, North Ethiopia. Land Degradation & Development, 29(3), 812–824. https://doi.org/10.1002/ldr.2814
Thomas, D. S. G., Sporton, D., & Perkins, J. (2015). The environmental impact of livestock ranches in the Kalahari, Botswana: Natural resource use, ecological change and human response in a dynamic dryland system. Land Degradation & Development, 11(4), 327–341. https://doi.org/10.1002/1099-145X(200007/08)11:4<327::AID-LDR395>3.0.CO;2-V
Vettorazzi, C. A., & Valente, R. A. (2016). Priority areas for forest restoration aiming at the conservation of water resources. Ecological Engineering, 94, 255–267. https://doi.org/10.1016/j.ecoleng.2016.05.069
Xu, J., Zhao, Y., Zhong, K., Ruan, H., & Liu, X. (2016). Coupling modified linear spectral mixture analysis and Soil Conservation Service curve number (SCS-CN) models to simulate surface runoff: Application to the main urban area of Guangzhou, China. Watermark, 8(12), 550. https://doi.org/10.3390/w8120550
Yang, L., Zhang, L., Li, Y., & Wu, S. (2015). Water-related ecosystem services provided by urban green space: A case study in Yixing City (China). Landscape and Urban Planning, 136, 40–51. https://doi.org/10.1016/j.landurbplan.2014.11.016
Zhang, L., Peng, J., Liu, Y., & Wu, J. (2017). Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, China. Urban Ecosystems, 20(3), 1–14. https://doi.org/10.1007/s11252-016-0629-y
Zheng, H., Li, Y., Robinson, B. E., Liu, G., Ma, D., Wang, F., … Daily, G. C. (2016). Using ecosystem service trade-offs to inform water conservation policies and management practices. Frontiers in Ecology and the Environment, 14(10), 527–532. https://doi.org/10.1002/fee.1432