Lefebvre, D.; School of Water, Energy and Environment, Cranfield University, College Road, Bedford, MK43 0AL, United Kingdom
Goglio, P.; School of Water, Energy and Environment, Cranfield University, College Road, Bedford, MK43 0AL, United Kingdom, Wageningen Economic Research, Wageningen University & Research, Leeuwenborch, Hollandsweg 1, Wageningen, 6706KN, Netherlands
Williams, A.; School of Water, Energy and Environment, Cranfield University, College Road, Bedford, MK43 0AL, United Kingdom
Manning, D. A. C.; School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
de Azevedo, A. C.; USP/ESALQ/LSO, Av. Padua Dias, 11, Piracicaba, SP 13415900, Brazil
Bergmann, M.; Geological Survey of Brazil (CPRM), Rua Banco da Provincia 105, Porto Alegre, Rio Grande do Sul CEP, 90840-030, Brazil
Meersmans, Jeroen ; Université de Liège - ULiège > Département GxABT > Analyse des risques environnementaux
Smith, P.
Title :
Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil
Publication date :
2019
Journal title :
Journal of Cleaner Production
ISSN :
0959-6526
eISSN :
1879-1786
Publisher :
Elsevier Ltd
Volume :
233
Pages :
468-481
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
National Eye Research Centre, NERCNatural Environment Research Council, NERCEconomic and Social Research Council, ESRCDepartment for Business, Energy and Industrial Strategy, UK Government, BEISEngineering and Physical Sciences Research Council, EPSRCDepartment for Business, Energy and Industrial Strategy, UK Government, BEIS
Araújo, M. da P.S., Campos, V.B.G., Bandeira, R.A.M., An overview of road cargo transport in Brazil. Int. J. Ind. Eng. Manag, 2013 URL [WWW Document] http://ijiemjournal.org/images/journal/volume4/ijiem_vol4_no3_7.pdf.
Baggio, S.B., Hartmann, L.A., Bello, R.M.S., Paralavas in the cretaceous paraná volcanic province, Brazil - a genetic interpretation of the volcanic rocks containing phenocrysts and glass. An. Acad. Bras. Cienc. 88 (2016), 2167–2193 https://doi.org/10.1590/0001-3765201620150088.
Beaulieu, E., Goddéris, Y., Labat, D., Roelandt, C., Oliva, P., Guerrero, B., Impact of atmospheric CO2 levels on continental silicate weathering. Geochem. Geophys. Geosyst., 11, 2010 https://doi.org/10.1029/2010GC003078.
Beerling, D.J., Enhanced rock weathering: biological climate change mitigation with co-benefits for food security?. Biol. Lett. 13 (2017), 4–7 https://doi.org/10.1098/rsbl.2017.0149.
Beerling, D.J., Leake, J.R., Long, S.P., Scholes, J.D., Ton, J., Nelson, P.N., Bird, M.I., Kantzas, E., Taylor, L.L., Sarkar, B., Kelland, M., DeLucia, E., Kantola, I., Müller, C., Rau, G.H., Hansen, J., Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 4 (2018), 138–147 https://doi.org/10.1038/s41477-018-0108-y.
Bergmann, M., Silveira, C.A.P., Bandeira, R., Bamberg, A., Martinazzo, R., Grecco, M., Amygdaloidal basalts to zeolites of the “serra geral” formation of Paraná Basin : potential agronomic use. [WWW Document]. Brazilian Stonemeal Conf. URL https://remineralize.org, 2013.
Berner, R.A., Kothavala, Z., GEOCARB III; a revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 301 (2001), 182–204 https://doi.org/10.2475/ajs.294.1.56.
Braz Machado, F., Reis, E., Rocha-Júnior, V., Soares Marques, L., José, A., Nardy, R., Vieira Zezzo, L., Marteleto, N.S., Geochemistry of the northern paraná continental flood basalt (PCFB) province: implications for regional chemostratigraphy. Brazilian J. Geol. 48 (2018), 177–199 https://doi.org/10.1371/journal.pone.0018728.
Bryan, S.E., Ernst, R.E., Revised definition of large igneous provinces (LIPs). Earth-Science Rev. 86 (2008), 175–202 https://doi.org/10.1016/j.earscirev.2007.08.008.
Campe, J., Kittredge, D., Klinger, L., The Potential of Remineralization with Rock Mineral Fines to Transform Agriculture, Forests, Sustainable Biofuels Production, Sequester Carbon, and Stabilize the Climate. 2015 [WWW Document]. URL http://remineralize.org/wp-content/uploads/2015/10/ODB1.pdf.
CNT Confederacao National do Transporte, Pesquisa de Rodovias Sudeste [MAP]. 2017 WWW Document]. URL http://pesquisarodovias.cnt.org.br/Paginas/mapa-por-regiao-uf.
Core Team, R., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2018 WWW Document]. URL https://www.r-project.org/.
DNPM, Cadastro nacional de Produtores de Brita - ano base 2015. WWW Document]. URL http://www.dnpm.gov.br, 2018.
EASAC, Negative emission technologies: what role in meeting Paris Agreement targets?. [WWW Document]. URL https://easac.eu, 2018.
Edwards, D.P., Lim, F., James, R.H., Pearce, C.R., Scholes, J., Freckleton, R.P., Beerling, D.J., Edwards, D.P., Climate change mitigation : potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol. Lett., 2017 https://doi.org/10.1098/rsbl.2016.0715.
Fantke, P., Bijster, M., Guignard, C., Hauschild, M., Huijbregts, M., Jolliet, O., Kounina, A., Magaud, V., Margni, M., McKone, T., Posthuma, L., Rosenbaum, R.K., van de Meent, D., van Zelm, R., USEtox® 2.0, Documentation (Version 1). (Ed. ), 2017 https://doi.org/10.11581/DTU:00000011.
Felipe, F.I., Lima, R.A.D.S., Rodrigues, S.M., Evolução da estrutura da indústria de tratores de rodas, no Brasil, no período de 1999 a 2008. 2008 https://www.cepea.esalq.usp.br.
Frischknecht, R., N.J., Althaus, H., Bauer, C., Doka, G., Dones, R., Hischier, R., Hellweg, S., Köllner, T., Loerincik, Y., Margni, M., Implementation of Life Cycle Impact Assessment Methods. Editors, (eds.), 2007 WWW Document]. Am. Midl. Nat. URL http://www.ecoinvent.org/fileadmin/documents/en/03_LCIA-Implementation.pdf.
Goglio, P., Smith, W.N., Worth, D.E., Grant, B.B., Desjardins, R.L., Chen, W., Tenuta, M., McConkey, B.G., Williams, A., Burgess, P.J., Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems: a Canadian scenario assessment. J. Clean. Prod. 172 (2018), 3770–3780 https://doi.org/10.1016/j.jclepro.2017.06.175.
Goldich, S.S., A study in rock-weathering. J. Geol. 46 (1938), 17–58 https://doi.org/10.1086/624619.
Golsteijn, Laura, How to use USEtox® characterisation factors in SimaPro | PRé sustainability. [WWW Document]. URL https://www.pre-sustainability.com/news/how-to-use-usetox-characterisation-factors-in-simapro, 2014 accessed,10,16,2018.
Google, Google Earth pro. WWW Document]. URL https://www.google.com/earth/download/gep/agree.html, 2018.
Guinee, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., van Oers, L., Sleeswijk, A.W., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J., Handbook on Life Cycle Assessment, Operational Guide to the ISO Standards, Eco-Efficiency in Industry and Science. 2002, Springer Netherlands, Dordrecht https://doi.org/10.1007/0-306-48055-7.
Harley, A.D., Gilkes, R.J., Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. Nutr. Cycl. Agroecosyst. 56 (2000), 11–36 https://doi.org/10.1023/A:1009859309453.
Hartmann, J., Moosdorf, N., The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13 (2012), 1–37 https://doi.org/10.1029/2012GC004370.
Hartmann, J., Jansen, N., Dürr, H.H., Kempe, S., Köhler, P., Global CO2-consumption by chemical weathering: what is the contribution of highly active weathering regions?. Glob. Planet. Chang. 69 (2009), 185–194 https://doi.org/10.1016/j.gloplacha.2009.07.007.
Harvey, L.D.D., Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J. Geophys. Res. Ocean. 113 (2008), 1–21 https://doi.org/10.1029/2007JC004373.
IBGE, Resultados do censo agro 2017. WWW Document]. Censo Agro 2017. URL https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/estabelecimentos.html?localidade=35, 2017. (Accessed 9 November 2018)
IPCC, Climate Change 2013: the Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., 2014, Cambridge Univesity Press, Cambridge, United Kingdom and New York, NY, USA.
Kanda, Y., Kotake, N., Comminution energy and evaluation in fine grinding, in: handbook of powder technology. 2007 https://doi.org/10.1016/S0167-3785(07)12015-7 529 550.
Kantola, I.B., Masters, M.D., Beerling, D.J., Long, S.P., Delucia, E.H., Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett., 2017 https://doi.org/10.1098/rsbl.2016.0714.
Kheshgi, H.S., Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20 (1995), 915–922 https://doi.org/10.1016/0360-5442(95)00035-6.
Khoo, H.H., Bu, J., Wong, R.L., Kuan, S.Y., Sharratt, P.N., Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia 4 (2011), 2494–2501 https://doi.org/10.1016/j.egypro.2011.02.145.
Kohler, P., Hartmann, J., Wolf-Gladrow, D.A., Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl. Acad. Sci. 107 (2010), 20228–20233 https://doi.org/10.1073/pnas.1000545107.
Kolosz, B.W., Sohi, S. p., Manning, D.A.C., CASPER: a modelling framework to link mineral carbonation with the turnover of organic matter in soil. Comput. Geosci. 124 (2019), 58–71 https://doi.org/10.1016/j.cageo.2018.12.012.
Landi, A., Mermut, A.R., Anderson, D.W., Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma 117 (2003), 143–156 https://doi.org/10.1016/S0016-7061(03)00161-7.
Leonardos, O.H., Theodoro, S.H., Assad, M.L., Remineralization for sustainable agriculture: a tropical perspective from a Brazilian viewpoint. Nutr. Cycl. Agroecosyst. 56 (1998), 3–9 https://doi.org/10.1023/A:1009855409700.
Li, G.G., Hartmann, J., Derry, L.A., West, A.J., You, C.F., Long, X., Zhan, T., Li, L., Li, G.G., Qiu, W., Li, T., Liu, L., Chen, Y., Ji, J., Zhao, L., Chen, J., Temperature dependence of basalt weathering. Earth Planet. Sci. Lett. 443 (2016), 59–69 https://doi.org/10.1016/j.epsl.2016.03.015.
Manfré, L.A., de Albuquerque Nóbrega, R.A., Quintanilha, J.A., Regional and local topography subdivision and landform mapping using SRTM-derived data: a case study in southeastern Brazil. Environ. Earth Sci. 73 (2015), 6457–6475 https://doi.org/10.1007/s12665-014-3869-2.
Manning, D.A.C., Mineral sources of potassium for plant nutrition. A review. Agron. Sustain. Dev. 30 (2010), 281–294 https://doi.org/10.1051/agro/2009023.
Manning, D.A.C., Innovation in resourcing geological materials as crop nutrients. Nat. Resour. Res. 27 (2018), 217–227 https://doi.org/10.1007/s11053-017-9347-2.
Manning, D.A.C., Renforth, P., Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils. Environ. Sci. Technol. 47 (2013), 135–141 https://doi.org/10.1021/es301250j.
Manning, D.A.C., Renforth, P., Lopez-Capel, E., Robertson, S., Ghazireh, N., Carbonate precipitation in artificial soils produced from basaltic quarry fines and composts: an opportunity for passive carbon sequestration. Int. J. Greenh. Gas Control 17 (2013), 309–317 https://doi.org/10.1016/j.ijggc.2013.05.012.
Martin, J.B., Carbonate minerals in the global carbon cycle. Chem. Geol. 449 (2017), 58–72 https://doi.org/10.1016/j.chemgeo.2016.11.029.
Massey, F.P., Roland Ennos, A., Hartley, S.E., Herbivore specific induction of silica-based plant defences. Oecologia 152 (2007), 677–683 https://doi.org/10.1007/s00442-007-0703-5.
Melo, V.F., Uchôa, S.C.P., Dias, F. de O., Barbosa, G.F., Doses de basalto moído nas propriedades químicas de um Latossolo Amarelo distrófico da savana de Roraima. Acta Amaz 42 (2012), 471–476 https://doi.org/10.1590/S0044-59672012000400004.
Mersi, W. Von, Kuhnert-Finkernagel, R., Schinner, F., The influence of rock powders on microbial activity of three forest soils. Zeitschrift für Pflanzenernährung und Bodenkd. 155 (1991), 29–33 https://doi.org/10.1002/jpln.19921550107.
Metso, Basics in minerals processing. WWW Document]. URL https://www.metso.com, 2015.
Meysman, F.J.R., Montserrat, F., Negative CO2 emissions via enhanced silicate weathering in coastal environments. Biol. Lett., 13, 2017, 20160905 https://doi.org/10.1098/rsbl.2016.0905.
Mitchell, C., Mitchell, P., Pascoe, R., Quarry fines minimisation: can we really have 10mm aggregate with no fines? [WWW Document]. Walton, Geoffrey, Proc. 14th Extr. Ind. Geol. Conf., 2008 URL http://nora.nerc.ac.uk/4854/.
Moraes, L.C. de, Seer, H.J., Marques, L.S., Geology, geochemistry and petrology of basalts from paraná continental magmatic province in the araguari, uberlândia, uberaba and sacramento regions, minas gerais state, Brazil. Brazilian J. Geol. 48 (2018), 221–241 https://doi.org/10.1590/2317-4889201820170091.
Nduagu, E., Bergerson, J., Zevenhoven, R., Life cycle assessment of CO2 sequestration in magnesium silicate rock - a comparative study. Energy Convers. Manag. 55 (2012), 116–126 https://doi.org/10.1016/j.enconman.2011.10.026.
Nunes, J.M.G., Kautzmann, R.M., Oliveira, C., Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). J. Clean. Prod. 84 (2014), 649–656 https://doi.org/10.1016/j.jclepro.2014.04.032.
Olivier, J.G.J., Schure, K.M., Peters, J.A.H.W., Trends in Global CO2 and Total Greenhouse Gas Emissions [WWW Document]. 2017, PBL Netherlands Environ. Assess. Agency http://www.pbl.nl.
Opolot, E., Finke, P.A., Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25). Biogeosciences 12 (2015), 6791–6808 https://doi.org/10.5194/bg-12-6791-2015.
Orumwense, O.A., Forssberg, E., Superfine and ultrafine grinding - a literature. Survey. Miner. Process. Extr. Metall. Rev. An Int. J. 11 (1992), 107–127 https://doi.org/10.1080/08827509208914216.
O'Connor, W.K., Dahlin, D.C., Rush, G.E., Gerdemann, S.J., Penner, L.R., Nilsen, D.N., Aqueous Mineral Carbonation: Mineral Availability, Pretreatment, Reaction Parametrics, and Process Studies. 2005, DOE https://doi.org/10.13140/RG.2.2.23658.31684.
Perrotta, M.M., Salvador, E.D., Lopes, R. da C., D'agostino, L.Z., Chieregati, L.A., Peruffo, N., Gomes, S.D., Sachs, L.L.B., Meira, V.T., Garcia, M., da, G.M., Larceda Filho, J.V. de, Geologia e recursos minerais do estado de São Paulo. 2006 WWW Document]. URL http://rigeo.cprm.gov.br/jspui/handle/doc/2966 accessed 8.15.18.
Ramezanian, A., Dahlin, A.S., Campbell, C.D., Hillier, S., Mannerstedt-Fogelfors, B., Öborn, I., Addition of a volcanic rockdust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity. Plant Soil 367 (2013), 419–436 https://doi.org/10.1007/s11104-012-1474-2.
Ramos, C.G., Querol, X., Oliveira, M.L.S., Pires, K., Kautzmann, R.M., Silva, L.F.O., A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Sci. Total Environ. 512–513 (2015), 371–380 https://doi.org/10.1016/j.scitotenv.2014.12.070.
Ramos, C.G., Querol, X., Dalmora, A.C., de Jesus Pires, K.C., Schneider, I.A.H., Silva, L.F.O., Kautzmann, R.M., Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 142 (2017), 2700–2706 https://doi.org/10.1016/j.jclepro.2016.11.006.
REMIN, n.d Improve Soil Health with Rock Dust | REMIN Scotland Ltd [WWW Document]. URL http://www.reminscotland.com/home/how-to-use/(accessed 9.21.2018).
Renforth, P., The potential of enhanced weathering in the UK. Int. J. Greenh. Gas Control 10 (2012), 229–243 https://doi.org/10.1016/j.ijggc.2012.06.011.
Renforth, P., Washbourne, C.L., Taylder, J., Manning, D.A.C., Silicate production and availability for mineral carbonation. Environ. Sci. Technol. 45 (2011), 2035–2041 https://doi.org/10.1021/es103241w.
Renforth, P., Pogge von Strandmann, P.A.E., Henderson, G.M., The dissolution of olivine added to soil: implications for enhanced weathering. Appl. Geochem. 61 (2015), 109–118 https://doi.org/10.1016/j.apgeochem.2015.05.016.
Rosado, L.P., Vitale, P., Penteado, C.S.G., Arena, U., Life cycle assessment of natural and mixed recycled aggregate production in Brazil. J. Clean. Prod. 151 (2017), 634–642 https://doi.org/10.1016/j.jclepro.2017.03.068.
Schenker, M.B., Pinkerton, K.E., Mitchell, D., Vallyathan, V., Elvine-Kreis, B., Green, F.H.Y., Pneumoconiosis from agricultural dust exposure among young California farmworkers. Environ. Health Perspect. 117 (2009), 988–994 https://doi.org/10.1289/ehp.0800144.
SEEG, São Paulo - Emissions [WWW Document]. 2016 Syst. Greenh. Gas Emiss. Remov. Estim. http://plataforma.seeg.eco.br/territories/sao-paulo/card?year=2016 (accessed 9.14.18).
SEEG, Total Emissions - Brazil [WWW Document]. 2016 Syst. Greenh. Gas Emiss. Remov. Estim. http://plataforma.seeg.eco.br/total_emission (accessed 9.14.18).
Smith, P., Davis, S.J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R.B., Cowie, A., Kriegler, E., Van Vuuren, D.P., Rogelj, J., Ciais, P., Milne, J., Canadell, J.G., McCollum, D., Peters, G., Andrew, R., Krey, V., Shrestha, G., Friedlingstein, P., Gasser, T., Grübler, A., Heidug, W.K., Jonas, M., Jones, C.D., Kraxner, F., Littleton, E., Lowe, J., Moreira, J.R., Nakicenovic, N., Obersteiner, M., Patwardhan, A., Rogner, M., Rubin, E., Sharifi, A., Torvanger, A., Yamagata, Y., Edmonds, J., Yongsung, C., Biophysical and economic limits to negative CO2emissions. Nat. Clim. Chang. 6 (2016), 42–50 https://doi.org/10.1038/nclimate2870.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., Hartmann, J., Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environ. Res. Lett., 13, 2018, 034010 https://doi.org/10.1088/1748-9326/aaa9c4.
Taylor, L.L., Beerling, D.J., Quegan, S., Banwart, S.A., Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development. Biol. Lett., 13, 2017 https://doi.org/10.1098/rsbl.2016.0868.
ten Berge, H.F.M., van der Meer, H.G., Steenhuizen, J.W., Goedhart, P.W., Knops, P., Verhagen, J., Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): a pot experiment. PLoS One, 7, 2012 https://doi.org/10.1371/journal.pone.0042098.
Theodoro, S.H., Leonardos, O.H., The use of rocks to improve family agriculture in Brazil. An. Acad. Bras. Cienc. 78 (2006), 721–730 https://doi.org/10.1590/S0001-37652006000400008.
UCLouvain, Climate Research Data Package. 2017 (CRDP) [WWW Document]. ESA Clim. Chang. Initiat. URL http://maps.elie.ucl.ac.be/CCI/viewer/download.php accessed 8.23.2018.
Wanke, P., Fleury, P.F., Transporte de cargas no Brasil: estudo exploratório das principais variáveis relacionadas aos diferentes modais e às suas estruturas de custos. [WWW Document]. Estrut. e Dinâmica do Set. Serviços no Bras. URL https://www.en.ipea.gov.br, 2006.
Washbourne, C.L., Lopez-Capel, E., Renforth, P., Ascough, P.L., Manning, D.A.C., Rapid removal of atmospheric CO2 by urban soils. Environ. Sci. Technol. 49 (2015), 5434–5440 https://doi.org/10.1021/es505476d.
Weidema, B.P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., Vadenbo, C.O., Wernet, G., Data Quality Guideline for the Ecoinvent Database Version 3. 2013 WWW Document]. URL http://www.ecoinvent.org/database/methodology-of-ecoinvent-3/methodology-of-ecoinvent-3.html.
Williamson, P., Bodle, R., Update on Climate Geoengineering in Relation to the Convention on Biological Diversity: Potential Impacts and Regulatory Framework. 2016 [WWW Document]. URL https://www.cbd.int/doc/publications/cbd-ts-84-en.pdf.