[en] Glycemic control (GC) has improved outcomes for intensive care unit (ICU) patients. However, the increased risk of hypoglycemia and glycemic variability due to inter- and intra- patient variability make safe, effective GC difficult. Stochastic TARgeted (STAR) GC framework is a unique, patient-specific, risk-based dosing protocol directly accounting for both inter- and intra- patient variability using a stochastic model of future patient variability. A new tri-variate (3D) stochastic model, developed and validated in virtual trials to provide more accurate future predictions of insulin sensitivity (SI), is clinically evaluated.
STAR-3D was implemented as standard care at the Christchurch Hospital ICU, New Zealand, between April 2019 and January 2021. In total, 567 patients (33276 hours) were treated. The overall median [IQR] BG achieved was 6.7 [6.0 7.8] mmol/L with 76% BG in the 4.4-8.0 mmol/L target band. Importantly, there were only 0.3% BG < 4.0 mmol/L (mild hypoglycemia) and no incidence of severe hypoglycemia (BG < 2.2 mmol/L). These outcomes were achieved with median [IQR] 4.0 [2.0 6.0] U/h insulin and median [IQR] nutrition delivery of 99 [80 100]% goal feed (GF). Similar safety and performance BG outcomes were obtained at a per-patient level, suggesting STAR-3D successfully provided safe, effective control for all patients, regardless of patient condition. Compared to the original version of STAR, STAR-3D provided improved safety and efficacy, while achieving higher nutrition delivery.
The new 3D stochastic model in STAR-3D provided higher safety and efficacy for all patients in this large clinical trial, despite using higher insulin rates than its predecessor to provide greater nutrition delivery. STAR-3D thus better captured patient-specific condition and variability to provide improved GC outcomes.
Disciplines :
Anesthesia & intensive care Endocrinology, metabolism & nutrition Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Uyttendaele, Vincent ; Université de Liège - ULiège > GIGA In silico - Model-based therap., Critic. Care Basic Sc.
Knopp, Jennifer L.
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Chase, J. Geoffrey
Language :
English
Title :
STAR-3D Clinical Trial Results: Improved performance and safety
Publication date :
2021
Event name :
11th IFAC Symposium on Biological and Medical Systems BMS 2021
Event place :
Ghent, Belgium
Event date :
19-22 Septembre 2021
Audience :
International
Journal title :
IFAC-PapersOnLine
ISSN :
2405-8971
eISSN :
2405-8963
Publisher :
Elsevier, Kidlington, United Kingdom
Special issue title :
11th IFAC Symposium on Biological and Medical Systems BMS 2021
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abu-Samah, A., Knopp, J. L., Razak, N. N. A., Razak, A. A., Jamaludin, U. K., Suhaimi, F. M., Ralib, A. M., Nor, M. B. M., Chase, J. G. and Pretty, C. G. 2019. Model-based glycemic control in a Malaysian intensive care unit: performance and safety study. Medical Devices (Auckland, NZ), 12, 215.
Ali, N. A., O'brien, J. M., Dungan, K., Phillips, G., Marsh, C. B., Lemeshow, S., Connors, A. F. and Preiser, J. C. 2008. Glucose variability and mortality in patients with sepsis. Crit Care Med, 36, 2316-21.
Bagshaw, S. M., Bellomo, R., Jacka, M. J., Egi, M., Hart, G. K. and George, C. 2009. The impact of early hypoglycemia and blood glucose variability on outcome in critical illness. Crit Care, 13.
Brunkhorst, F. M., Engel, C., Bloos, F., Meier-Hellmann, A., Ragaller, M., Weiler, N., Moerer, O., Gruendling, M., Oppert, M., Grond, S., Olthoff, D., Jaschinski, U., John, S., Rossaint, R., Welte, T., Schaefer, M., Kern, P., Kuhnt, E., Kiehntopf, M., Hartog, C., Natanson, C., Loeffler, M., Reinhart, K. and German Competence Network, S. 2008. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med, 358, 125-39.
Chase, J. G., Pretty, C. G., Pfeifer, L., Shaw, G. M., Preiser, J. C., Le Compte, A. J., Lin, J., Hewett, D., Moorhead, K. T. and Desaive, T. 2010a. Organ failure and tight glycemic control in the SPRINT study. Crit Care, 14, R154.
Chase, J. G., Suhaimi, F., Penning, S., Preiser, J. C., Le Compte, A. J., Lin, J., Pretty, C. G., Shaw, G. M., Moorhead, K. T. and Desaive, T. 2010b. Validation of a model-based virtual trials method for tight glycemic control in intensive care. Biomed Eng Online, 9, 84.
Chase, J. G., Le Compte, A. J., Suhaimi, F., Shaw, G. M., Lynn, A., Lin, J., Pretty, C. G., Razak, N., Parente, J. D., Hann, C. E., Preiser, J. C. and Desaive, T. 2011a. Tight glycemic control in critical care-The leading role of insulin sensitivity and patient variability: a review and modelbased analysis. Comput Methods Programs Biomed, 102, 156-71.
Chase, J. G., Le Compte, A. J., Preiser, J. C., Shaw, G. M., Penning, S. and Desaive, T. 2011b. Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice? Ann Intensive Care, 1, 11.
Chase, J. G., Desaive, T., Bohe, J., Cnop, M., De Block, C., Gunst, J., Hovorka, R., Kalfon, P., Krinsley, J., Renard, E. and Preiser, J. C. 2018a. Improving glycemic control in critically ill patients: personalized care to mimic the endocrine pancreas. Crit Care, 22, 182.
Chase, J. G., Preiser, J. C., Dickson, J. L., Pironet, A., Chiew, Y. S., Pretty, C. G., Shaw, G. M., Benyo, B., Moeller, K., Safaei, S., Tawhai, M., Hunter, P. and Desaive, T. 2018b. Next-generation, personalised, model-based critical care medicine: a state-of-The art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed Eng Online, 17, 24.
Chase, J. G., Benyo, B. and Desaive, T. 2019. Glycemic control in the intensive care unit: A control systems perspective. Annual Reviews in Control, 48, 359-368.
Davidson, S., Pretty, C., Uyttendaele, V., Knopp, J., Desaive, T. and Chase, J. G. 2019. Multi-input stochastic prediction of insulin sensitivity for tight glycaemic control using insulin sensitivity and blood glucose data. Comput Methods Programs Biomed, 182, 105043.
Dickson, J. L., Stewart, K. W., Pretty, C. G., Flechet, M., Desaive, T., Penning, S., Lambermont, B. C., Benyo, B., Shaw, G. M. and Chase, J. G. 2017. Generalisability of a Virtual Trials Method for Glycaemic Control in Intensive Care. IEEE Transactions on Biomedical Engineering, 65.
Dungan, K. M., Braithwaite, S. S. and Preiser, J. C. 2009. Stress hyperglycaemia. Lancet, 373, 1798-807.
Egi, M., Bellomo, R., Stachowski, E., French, C. J. and Hart, G. 2006. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology, 105, 244-52.
Egi, M. and Bellomo, R. 2009. Reducing glycemic variability in intensive care unit patients: a new therapeutic target? J Diabetes Sci Technol, 3, 1302-8.
Egi, M., Bellomo, R., Stachowski, E., French, C. J., Hart, G. K., Taori, G., Hegarty, C. and Bailey, M. 2010. Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc, 85, 217-24.
Evans, A., Le Compte, A., Tan, C. S., Ward, L., Steel, J., Pretty, C. G., Penning, S., Suhaimi, F., Shaw, G. M., Desaive, T. and Chase, J. G. 2012. Stochastic targeted (STAR) glycemic control: design, safety, and performance. J Diabetes Sci Technol, 6, 102-15.
Finfer, S., Chittock, D. R., Su, S. Y., Blair, D., Foster, D., Dhingra, V., Bellomo, R., Cook, D., Dodek, P., Henderson, W. R., Hebert, P. C., Heritier, S., Heyland, D. K., Mcarthur, C., Mcdonald, E., Mitchell, I., Myburgh, J. A., Norton, R., Potter, J., Robinson, B. G. and Ronco, J. J. 2009. Intensive versus conventional glucose control in critically ill patients. N Engl J Med, 360, 1283-97.
Finfer, S., Liu, B., Chittock, D. R., Norton, R., Myburgh, J. A., Mcarthur, C., Mitchell, I., Foster, D., Dhingra, V., Henderson, W. R., Ronco, J. J., Bellomo, R., Cook, D., Mcdonald, E., Dodek, P., Hebert, P. C., Heyland, D. K. and Robinson, B. G. 2012. Hypoglycemia and risk of death in critically ill patients. N Engl J Med, 367, 1108-18.
Fisk, L. M., Le Compte, A. J., Shaw, G. M., Penning, S., Desaive, T. and Chase, J. G. 2012. STAR development and protocol comparison. IEEE Trans Biomed Eng, 59, 3357- 64.
Krinsley, J. S. 2003. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc, 78, 1471-8.
Krinsley, J. S. 2004. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc, 79, 992-1000.
Krinsley, J. S. 2005. Glucose control reduces ICU stay and mortality. Perform Improv Advis, 9, 4-6, 1.
Krinsley, J. S. and Grover, A. 2007. Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med, 35, 2262-7.
Krinsley, J. S. and Preiser, J. C. 2015. Time in blood glucose range 70 to 140 mg/dl >80% is strongly associated with increased survival in non-diabetic critically ill adults. Crit Care, 19, 179.
Le Compte, A. J., Lee, D. S., Chase, J. G., Lin, J., Lynn, A. and Shaw, G. M. 2010. Blood glucose prediction using stochastic modeling in neonatal intensive care. IEEE Trans Biomed Eng, 57, 509-18.
Lin, J., Lee, D., Chase, J. G., Shaw, G. M., Hann, C. E., Lotz, T. and Wong, J. 2006. Stochastic modelling of insulin sensitivity variability in critical care. Biomedical Signal Processing and Control, 1, 229-242.
Lin, J., Lee, D., Chase, J. G., Shaw, G. M., Le Compte, A., Lotz, T., Wong, J., Lonergan, T. and Hann, C. E. 2008. Stochastic modelling of insulin sensitivity and adaptive glycemic control for critical care. Comput Methods Programs Biomed, 89, 141-52.
Lin, J., Razak, N. N., Pretty, C. G., Le Compte, A., Docherty, P., Parente, J. D., Shaw, G. M., Hann, C. E. and Geoffrey Chase, J. 2011. A physiological Intensive Control Insulin-Nutrition-Glucose (ICING) model validated in critically ill patients. Comput Methods Programs Biomed, 102, 192-205.
Mccowen, K. C., Malhotra, A. and Bistrian, B. R. 2001. Stress-induced hyperglycemia. Crit Care Clin, 17, 107-24.
Mesotten, D. and Van Den Berghe, G. 2009. Clinical benefits of tight glycaemic control: focus on the intensive care unit. Best Pract Res Clin Anaesthesiol, 23, 421-9.
Penning, S., Chase, J. G., Preiser, J. C., Pretty, C. G., Signal, M., Melot, C. and Desaive, T. 2014. Does the achievement of an intermediate glycemic target reduce organ failure and mortality? A post hoc analysis of the Glucontrol trial. J Crit Care, 29, 374-9.
Penning, S., Pretty, C., Preiser, J. C., Shaw, G. M., Desaive, T. and Chase, J. G. 2015. Glucose control positively influences patient outcome: A retrospective study. J Crit Care, 30, 455-9.
Preiser, J. C., Devos, P., Ruiz-Santana, S., Melot, C., Annane, D., Groeneveld, J., Iapichino, G., Leverve, X., Nitenberg, G., Singer, P., Wernerman, J., Joannidis, M., Stecher, A. and Chiolero, R. 2009. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med, 35, 1738-48.
Reed, C. C., Stewart, R. M., Sherman, M., Myers, J. G., Corneille, M. G., Larson, N., Gerhardt, S., Beadle, R., Gamboa, C., Dent, D., Cohn, S. M. and Pruitt, B. A., Jr. 2007. Intensive insulin protocol improves glucose control and is associated with a reduction in intensive care unit mortality. J Am Coll Surg, 204, 1048-54; discussion 1054-5.
Signal, M., Le Compte, A., Shaw, G. M. and Chase, J. G. 2012. Glycemic levels in critically ill patients: are normoglycemia and low variability associated with improved outcomes? J Diabetes Sci Technol, 6, 1030-7.
Singer, P., Blaser, A. R., Berger, M. M., Alhazzani, W., Calder, P. C., Casaer, M. P., Hiesmayr, M., Mayer, K., Montejo, J. C., Pichard, C., Preiser, J. C., Van Zanten, A. R. H., Oczkowski, S., Szczeklik, W. and Bischoff, S. C. 2019. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr, 38, 48-79.
Stewart, K. W., Pretty, C. G., Tomlinson, H., Thomas, F. L., Homlok, J., Noemi, S. N., Illyes, A., Shaw, G. M., Benyo, B. and Chase, J. G. 2016. Safety, efficacy and clinical generalization of the STAR protocol: a retrospective analysis. Ann Intensive Care, 6, 24.
Stewart, K. W., Chase, J. G., Pretty, C. G. and Shaw, G. M. 2018a. Nutrition delivery of a model-based ICU glycaemic control system. Ann Intensive Care, 8, 4.
Stewart, K. W., Pretty, C. G., Shaw, G. M. and Chase, J. G. 2018b. Interpretation of Retrospective BG Measurements. J Diabetes Sci Technol, 12, 967-975.
Uyttendaele, V., Dickson, J. L., Shaw, G. M., Desaive, T. and Chase, J. G. 2017. Untangling glycaemia and mortality in critical care. Crit Care, 21, 152.
Uyttendaele, V., Knopp, J. L., Pirotte, M., Morimont, P., Lambermont, B., Shaw, G., Desaive, T. and Chase, J. G. 2018a. Preliminary results from the STAR-Liège clinical trial: Virtual trials, safety, performance, and compliance analysis. IFAC-PapersOnLine, 51, 355-360.
Uyttendaele, V., Dickson, J., Stewart, K., Desaive, T., Benyo, B., Szabo-Nemedi, N., Illyes, A., Shaw, G. and Chase, G. 2018b. A 3D insulin sensitivity prediction model enables more patient-specific prediction and model-based glycaemic control. Biomed Signal Process Control, 46, 192-200.
Uyttendaele, V., Knopp, J. L., Pirotte, M., Morimont, P., Lambermont, B., Shaw, G. M., Desaive, T. and Chase, J. G. 2019a. STAR-Liège Clinical Trial Interim Results: Safe and Effective Glycemic Control for All. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE.
Uyttendaele, V., Knopp, J. L., Davidson, S., Desaive, T., Benyo, B., Shaw, G. M. and Chase, J. G. 2019b. 3D kernel-density stochastic model for more personalized glycaemic control: development and in-silico validation. BioMedical Engineering OnLine, 18, 102.
Uyttendaele, V., Knopp, J. L., Shaw, G. M., Desaive, T. and Chase, J. G. 2019c. Is intensive insulin therapy the scapegoat for or cause of hypoglycaemia and poor outcome? IFAC Journal of Systems and Control, 9.
Uyttendaele, V., Knopp, J. L., Pirotte, M., Morimont, P., Lambermont, B., Shaw, G. M., Desaive, T. and Chase, J. G. 2020a. Translating A Risk-Based Glycaemic Control Framework for Critically Ill Patients: STAR-Liège. IFAC-PapersOnline, 6-pages.
Uyttendaele, V., Knopp, J. L., Shaw, G. M., Desaive, T. and Chase, J. G. 2020b. Risk and Reward: Extending stochastic glycaemic control intervals to reduce workload. Biomed Eng Online.
Van Den Berghe, G., Wouters, P., Weekers, F., Verwaest, C., Bruyninckx, F., Schetz, M., Vlasselaers, D., Ferdinande, P., Lauwers, P. and Bouillon, R. 2001. Intensive insulin therapy in critically ill patients. N Engl J Med, 345, 1359-67.
Van Den Berghe, G., Wilmer, A., Hermans, G., Meersseman, W., Wouters, P. J., Milants, I., Van Wijngaerden, E., Bobbaers, H. and Bouillon, R. 2006. Intensive Insulin Therapy in the Medical ICU. N Engl J Med, 354, 449-61.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.