[en] We report on methane (CH4) stable isotope (d13C and d2H) measurements from landfast sea ice collected near Barrow (Utqiagvik, Alaska) and Cape Evans (Antarctica) over the winter-to-spring transition. These measurements provide novel insights into pathways of CH4 production and consumption in sea ice. We found substantial differences between the two sites. Sea ice overlying the shallow shelf of Barrow was supersaturated in CH4 with a clear microbial origin, most likely from methanogenesis in the sediments. We estimated that in situ CH4 oxidation consumed a substantial fraction of the CH4 being supplied to the sea ice, partly explaining the large range of isotopic values observed (d13C between –68.5 and –48.5 ‰ and d2H between –246 and –104 ‰). Sea ice at Cape Evans was also supersaturated in CH4 but with surprisingly high d13C values (between –46.9 and –13.0 ‰), whereas d2H values (between –313 and –113 ‰) were in the range of those observed at Barrow. These are the first measurements of CH4 isotopic composition in Antarctic sea ice. Our data set suggests a potential combination of a hydrothermal source, in the vicinity of the Mount Erebus, with aerobic CH4 formation in sea ice, although the metabolic pathway for the latter still needs to be elucidated. Our observations show that sea ice needs to be considered as an active biogeochemical interface, contributing to CH4 production and consumption, which disputes the standing paradigm that sea ice is an inert barrier passively accumulating CH4 at the ocean-atmosphere boundary.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aumont, O, Ethé, C, Tagliabue, A, Bopp, L, Gehlen, M. 2015. PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development 8(8): 2465-2513. DOI: http://dx.doi.org/10.5194/gmd-8-2465-2015.
Bižić, M, Klintzsch, T, Ionescu, D, Hindiyeh, MY, Günthel, M, Muro-Pastor, AM, Eckert, W, Urich, T, Keppler, F, Grossart, HP. 2020. Aquatic and terrestrial cyanobacteria produce methane. Science Advances 6(3): 1-10. DOI: http://dx.doi.org/10.1126/sciadv.aax5343.
Brass, M, Röckmann, T. 2010. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane. Atmospheric Measurement Techniques 3: 1707-1721. DOI: http://dx.doi.org/10.5194/amt-3-1707-2010.
Burke, RA. 1993. Possible influence of hydrogen concentration on microbial methane stable hydrogen isotopic composition. Chemosphere 26(1-4): 55-67. DOI: http://dx.doi.org/10.1016/0045-6535(93)90 412-X.
Carnat, G, Zhou, J, Papakyriakou, T, Delille, B, Goossens, T, Haskell, T, Schoemann, V, Fripiat, F, Rintala, JM, Tison, JL. 2014. Physical and biological controls on DMS, P dynamics in ice shelf-influenced fast ice during a winter-spring and a spring-summer transitions. Journal of Geophysical Research: Oceans 119: 2882-2905. DOI: http://dx. doi.org/10.1002/2013JC009381.
Coleman, DD, Risatti, JD, Schoell, M. 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidising bacteria. Geochimica et Cosmochimica Acta 45: 1033-1037. DOI: http://dx.doi.org/10.1016/0016-7037(81)90129-0.
Cox, GFN, Weeks, WF. 1983. Equations for determining the gas and brine volumes in sea ice samples. Journal of Glaciology 29(102): 306-316.
Crabeck, O, Delille, B, Thomas, D, Geilfus, NX, Rysgaard, S, Tison, JL. 2014. CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input. Biogeosciences 11(23): 6525-6538. DOI: http://dx.doi.org/10.5194/bg-11-6525-2014.
Damm, E, Helmke, E, Thoms, S, Schauer, U, Nöthig, E, Bakker, K, Kiene, RP. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences Discussions 6: 10355-10379. DOI: http://dx.doi.org/10.5194/bgd-6-10355-2009.
Damm, E, Kiene, RP, Schwarz, J, Falck, E, Dieckmann, G. 2008. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Marine Chemistry 109(1-2): 45-59. DOI: http://dx.doi.org/10.1016/j.marchem.2007.12.003.
Damm, E, Rudels, B, Schauer, U, Mau, S, Dieckmann, G. 2015. Methane excess in Arctic surface water-triggered by sea ice formation and melting. Scientific Reports 5: 16179. DOI: http://dx.doi.org/10.1038/srep16179.
Dean, JF, Middelburg, JJ, Röckmann, T, Aerts, R, Blauw, LG, Egger, M, Jetten, MS, de Jong, AE, Meisel, OH, Rasigraf, O, Slomp, CP. 2018. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics 56(1): 207-250. DOI: http://dx.doi.org/10.1002/2017RG000559.
Dedysh, SN, Knief, C. 2018. Diversity and phylogeny of described aerobic methanotrophs, in Kalyuzhnaya, MG, Xing, X-H eds., Methane biocatalysis: Paving the way to sustainability. Springer International Publishing: 17-42. DOI: http://dx.doi.org/10.1007/978-3-319-74866-5_2.
De Graaf, W, Wellsbury, P, Parkes, RJ, Cappenberg, TE. 1996. Comparison of acetate turnover in methanogenic and sulfate-reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors: Evidence for isotopic exchange. Applied and Environmental Microbiology 62(3): 772-777. DOI: http://dx.doi.org/10.1128/aem.62.3.772-777. 1996.
Delille, B, Vancoppenolle, M, Geilfus, N-X, Tilbrook, B, Lannuzel, D, Schoemann, V, Becquevort, S, Carnat, G, Delille, D, Lancelot, C, Chou, L. 2014. Southern ocean CO2 sink: The contribution of the sea ice. Journal of Geophysical Research: Oceans 119(9): 6340-6355. DOI: http://dx.doi.org/10.1002/2014JC009941.
Fernández-Méndez, M, Katlein, C, Rabe, B, Nicolaus, M, Peeken, I, Bakker, K, Flores, H, Boetius, A. 2015. Photosynthetic production in the Central Arctic during the record sea-ice minimum in 2012. Biogeosciences Discussions 12(3): 2897-2945. DOI: http://dx.doi.org/10.5194/bgd-12-2897-2015.
Ferré, B, Jansson, PG, Moser, M, Serov, P, Portnov, A, Graves, CA, Panieri, G, Gründger, F, Berndt, C, Lehmann, MF, Niemann, H. 2020. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nature Geoscience 13(2): 144-148. DOI: http://dx.doi.org/10.1038/s41561-019-0515-3.
Golden, KM, Ackley, SF, Lytle, VI. 1998. The percolation phase transition in sea ice. Science 282(5397): 2238-2241. DOI: http://dx.doi.org/10.1126/science.282.5397.2238.
Graves, CA, Steinle, L, Rehder, G, Niemann, H, Connelly, DP, Lowry, D, Fisher, RE, Stott, AW, Sahling, H, James, RH. 2015. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard. Journal of Geophysical Research: Oceans 120(9): 6185-6201. DOI: http://dx.doi.org/10.1002/2015JC011084.
Grossart, H-P, Frindte, K, Dziallas, C, Eckert, W, Tang, KW. 2011. Microbial methane production in oxygenated water column of an oligotrophic lake. Proceedings of the National Academy of Sciences 108(49): 19657-19661. DOI: http://dx.doi.org/10.1073/pnas.1110716108.
Hartmann, JF, Günthel, M, Klintzsch, T, Kirillin, G, Grossart, HP, Keppler, F, Isenbeck-Schröter, M. 2020. High spatiotemporal dynamics of methane production and emission in oxic surface water. Environmental Science and Technology 54(3): 1451-1463. DOI: http://dx.doi.org/10.1021/acs.est. 9b03182.
Hayes, JM. 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Stable Isotope Geochemistry 43(March): 225-277. DOI: http://dx.doi.org/10.2138/gsrmg.43.1.225.
Hayes, JM. 2004. An introduction to isotopic calculations. Woods Hole, MA: Woods Hole Oceanographic Institution, p. 2543.
He, X, Sun, L, Xie, Z, Huang, W, Long, N, Li, Z, Xing, G. 2013. Sea ice in the Arctic Ocean: Role of shielding and consumption of methane. Atmospheric Environment 67: 8-13. DOI: http://dx.doi.org/10.1016/j.atmosenv.2012.10.029.
Holmes, ME, Sansone, FJ, Rust, TM, Popp, BN. 2000. Methane production, consumption, and air-sea exchange in the open ocean: An evaluation based on carbon isotopic ratios. Global Biogeochemical Cycles 14(1): 1-10. DOI: http://dx.doi.org/10.1029/1999GB001209.
Jacques, C, Gkritzalis, T, Tison, J-L, Hartley, T, van der Veen, C, Röckmann, T, Middelburg, JJ, Cattrijsse, A, Egger, M, Dehairs, F, Sapart, CJ. 2020. Carbon and hydrogen isotope signatures of dissolved methane in the Scheldt Estuary. Estuaries and Coasts 44(1): 137-146. DOI: http://dx.doi.org/10.1007/s12237-020-00768-3.
Karl, DM, Beversdorf, L, Björkman, KM, Church, MJ, Martinez, A, Delong, EF. 2008. Aerobic production of methane in the sea. Nature Geoscience 1(7): 473-478. DOI: http://dx.doi.org/10.1038/ngeo234.
Karl, DM, Tilbrook, BD. 1994. Production and transport of methane in oceanic particulate organic matter. Nature 368(6473): 732-734. DOI: http://dx.doi.org/10.1038/368732a0.
Kiene, RP. 1991. Production and consumption of methane in aquatic systems, in Rogers, WB, Whitman, JE eds., Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. Washington, DC: American Society for Microbiology: 111-146.
Kinnaman, FS, Valentine, DL, Tyler, SC. 2007. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochimica et Cosmochimica Acta 71(2): 271-283. DOI: http://dx.doi.org/10.1016/j.gca.2006.09.007.
Klintzsch, T, Langer, G, Nehrke, G, Wieland, A, Lenhart, K, Keppler, F. 2019. Methane production by three widespread marine phytoplankton species: Release rates, precursor compounds, and potential relevance for the environment. Biogeosciences 16(20): 4129-4144. DOI: http://dx.doi.org/10.5194/bg-16-4129-2019.
Koh, EY, Cowie, ROM, Simpson, AM, O'Toole, R, Ryan, KG. 2012. The origin of cyanobacteria in Antarctic sea ice: Marine or freshwater? Environmental Microbiology Reports 4(5): 479-483. DOI: http://dx.doi.org/10.1111/j.1758-2229.2012.00346.x.
Konn, C, Charlou, JL, Holm, NG, Mousis, O. 2015. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the mid-Atlantic ridge. Astrobiology 15(5): 381-399. DOI: http://dx.doi.org/10.1089/ast.2014.1198.
Kort, EA, Wofsy, SC, Daube, BC, Diao, M, Elkins, JW, Gao, RS, Hintsa, EJ, Hurst, DF, Jimenez, R, Moore, FL, Spackman, JR. 2012. Atmospheric observations of Arctic Ocean methane emissions up to 82 North. Nature Geoscience 5(5): 318-321. DOI: http://dx.doi.org/10.1038/ngeo1452.
Labidi, J, Young, ED, Giunta, T, Kohl, IE, Seewald, J, Tang, H, Lilley, MD, Früh-Green, GL. 2020. Methane thermometry in deep-sea hydrothermal systems: Evidence for re-ordering of doubly-substituted isotopologues during fluid cooling. Geochimica et Cosmochimica Acta 288: 248-261. DOI: http://dx.doi.org/10.1016/j.gca.2020.08.013.
Lenhart, K, Klintzsch, T, Langer, G, Nehrke, G, Bunge, M, Schnell, S, Keppler, F. 2016. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences 13(10): 3163-3174. DOI: http://dx.doi.org/10.5194/bg-13-3163-2016.
Lorenson, TD, Kvenvolden, KA. 1995. Methane in coastal sea water, sea ice and bottom sediments, Beaufort Sea, Alaska. U.S. Geological Survey Open-File Report 95-70. U.S. Geological Survey, Menlo Park, CA.
Mariotti, A, Germon, JC, Hubert, P, Kaiser, P, Letolle, R, Tardieux, A, Tardieux, P. 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62: 413-430. DOI: http://dx.doi.org/10.1007/BF02374138
Martos, YM, Catalán, M, Jordan, TA, Golynsky, A, Golynsky, D, Eagles, G, Vaughan, DG. 2017. Heat flux distribution of Antarctica unveiled. Geophysical Research Letters 44(22): 11417-11426. DOI: http://dx.doi.org/10.1002/2017GL075609.
McGinnis, DF, Greinert, J, Artemov, Y, Beaubien, SE, Wüest, A. 2006. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? Journal of Geophysical Research: Oceans 111(9): 1-15. DOI: http://dx.doi.org/10.1029/2005JC003183.
Nisbet, EG, Dlugokencky, EJ, Manning, MR, Lowry, D, Fisher, RE, France, JL, Michel, SE, Miller, JB, White, JW, Vaughn, B, Bousquet, P. 2016. Rising atmospheric methane: 2007-2014 growth and isotopic shift. Global Biogeochemical Cycles 30: 1-15. DOI: http://dx.doi.org/10.1002/2015GB005326. Received.
O'Connor, FM, Boucher, O, Gedney, N, Jones, CD, Fol-berth, GA, Coppell, R, Friedlingstein, P, Collins, WJ, Chappellaz, J, Ridley, J, Johnson, CE. 2010. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Reviews of Geophysics 48(4): 1-33. DOI: http://dx.doi.org/10.1029/2010RG000326.
Petrich, C, Eicken, H. 2017. Overview of sea ice growth and properties, in Thomas, DN ed., Sea ice. Chichester, UK: John Wiley: 1-41.
Proskurowski, G, Lilley, MD, Olson, EJ. 2008. Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flow vents at 9.50'N East Pacific Rise. Geochimica et Cosmochimica Acta 72(8): 2005-2023. DOI: http://dx.doi.org/10.1016/j.gca.2008.01.025.
Raynaud, D, Delmas, D, Ascencio, JM, Legrand, M. 1983. Gas extraction from polar ice cores: A critical issue for studying the evolution of atmospheric CO2 and ice-sheet surface elevation. Annals of Glaciology 3: 265-268. DOI: http://dx.doi.org/10.3189/S0260305500002895.
Reeburgh, W. 2007. Oceanic methane biogeochemistry. American Chemical Society 107(2): 486-513. DOI: http://dx.doi.org/10.1021/cr050362v.
Risk, GF, Hochstein, MP. 1974. Heat flow at arrival heights, Ross Island, Antarctica. New Zealand Journal of Geology and Geophysics 17(3): 629-644. https://doi.org/10.1080/00288306.1973. 10421586.
Sapart, CJ, Martinerie, P, Witrant, E, Chappelaz, J, van der Wal, RSW, Sperlich, P, van der Veen, C, Bernard, S, Sturges, WT, Blunier, T, Schwander, J, Etheridge, D, Röckmann, T. 2013. Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements? Atmospheric Chemistry Physics 13(14): 6993-7005. DOI: http://dx.doi.org/10.5194/acp-13-6993-2013
Sapart, CJ, Shakhova, N, Semiletov, I, Jansen, J, Szidat, S, Kosmach, D, Dudarev, O, Veen, CV, Egger, M, Sergienko, V, Salyuk, A. 2017. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences Discussions 14: 2283-2292. DOI: http://dx.doi.org/10.5194/bg-2016-367.
Sapart, CJ, Van Der Veen, C, Vigano, I, Brass, M, Van De Wal, RSW, Bock, M, Fischer, H, Sowers, T, Buizert, C, Sperlich, P, Blunier, T. 2011. Simultaneous stable isotope analysis of methane and nitrous oxide on ice core samples. Atmospheric Measurement Techniques 4(12): 2607-2618. DOI: http://dx.doi.org/10.5194/amt-4-2607-2011.
Sasakawa, M, Tsunogai, U, Kameyama, S, Nakagawa, F, Nojiri, Y, Tsuda, A. 2008. Carbon isotopic characterization for the origin of excess methane in subsurface seawater. Journal of Geophysical Research: Oceans 113(C3). DOI: http://dx.doi.org/10.1029/2007JC004217.
Shakhova, N, Semiletov, I, Leifer, I, Salyuk, A, Rekant, P, Kosmach, D. 2010a. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research: Oceans 115(8): 1-14. DOI: http://dx.doi.org/10.1029/2009JC005602.
Shakhova, N, Semiletov, I, Salyuk, A, Yusupov, V, Kosmach, D, Gustafsson, Ö. 2010b. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 445(June): 1504-1508. DOI: http://dx.doi.org/10.1126/science.1182221.
Tilbrook, BD, Karl, DM. 1995. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Marine Chemistry 49(1): 51-64. DOI: http://dx.doi.org/10.1016/0304-4203(94)00058-L.
Tison, J-L, Delille, B, Papadimitriou, S. 2017. Gases in sea ice, in Thomas, DN ed., Sea ice. 3rd Edition. John Wiley: 433-471. DOI: http://dx.doi.org/10.1002/9781118778371.ch18.
Tsunogai, U, Miyoshi, Y, Matsushita, T, Komatsu, DD, Ito, M, Sukigara, C, Nakagawa, F, Maruo, M. 2020. Dual stable isotope characterization of excess methane in oxic waters of a mesotrophic lake. Limnology and Oceanography 65(12): 2937-2952.
Tsunogai, U, Yoshida, N, Ishibashi, J, Gamo, T. 2000. Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: Implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochimica et Cosmochimica Acta 64(14): 2439-2452. DOI: http://dx.doi.org/10.1016/S0016-7037(00)00374-4.
Uhlig, C, Kirkpatrick, JB, D'Hondt, S, Loose, B. 2018. Methane-oxidizing seawater microbial communities from an Arctic shelf. Biogeosciences 15(11): 3311-3329. DOI: http://dx.doi.org/10.5194/bg-15-3311-2018.
Van der Linden, FC, Tison, JL, Champenois, W, Moreau, S, Carnat, G, Kotovitch, M, Fripiat, F, Deman, F, Roukaerts, A, Dehairs, F, Wauthy, S. 2020. Sea ice CO2 dynamics across seasons: Impact of processes at the interfaces. Journal of Geophysical Research: Oceans 125(6): e2019JC015807. DOI: http://dx.doi.org/10.1029/2019JC015807.
Welhan, JA. 1988. Origins of methane in hydrothermal systems. Chemical Geology 71(1-3): 183-198. DOI: http://dx.doi.org/10.1016/0009-2541(88)90 114-3.
White, JWC, Vaughn, BH, Michel, SE. 2016. University of Colorado, Institute of Arctic and Alpine Research (INSTAAR), stable isotopic composition of atmospheric methane (2H) from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 2005-2009, Version: 26 April 2016. Ftp://Aftp.Cmdl.Noaa.Gov/Data/Trace_gases/Ch4h2/Flask/.
White, JWC, Vaughn, BH, Michel, SE. 2018. University of Colorado, Institute of Arctic and Alpine Research (INSTAAR), stable isotopic composition of atmospheric methane (13C) from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1998-2017, Version: 24 September 2018. Ftp://Aftp.Cmdl.Noaa.Gov/Data/Trace_gases/Ch4c13/Flask/.
Whiticar, MJ. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161: 291-314. DOI: http://dx.doi.org/10.1016/S0009-2541(99)00092-3.
Whiticar, MJ, Suess, E. 1990. Hydrothermal hydrocarbon gases in the sediments of the King George Basin, Bransfield Strait, Antarctica. Applied Geochemistry 5: 135-147.
Wilmotte, A, Demonceau, C, Goffart, A, Hecq, JH, Demoulin, V, Crossley, AC. 2002. Molecular and pigment studies of the picophytoplankton in a region of the Southern Ocean (42-54.S, 141-144.E) in March 1998. Deep-Sea Research Part II: Topical Studies in Oceanography 49(16): 3351-3363. DOI: http://dx.doi.org/10.1016/S0967-0645(02)00087-5.
Zhou, J, Delille, B, Eicken, H, Vancoppenolle, M, Brabant, F, Carnat, G, Geilfus, NX, Papakyriakou, T, Heinesch, B, Tison, JL. 2013. Physical and biogeochemical properties in landfast Sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons. Journal of Geophysical Research: Oceans 118(6): 3172-3189. DOI: http://dx.doi.org/10. 1002/jgrc.20232.
Zhou, J, Tison, J-L, Carnat, G, Geilfus, N-X, Delille, B. 2014. Physical controls on the storage of methane in landfast sea ice. The Cryosphere 8(3): 1019-1029. DOI: http://dx.doi.org/10.5194/tc-8-1019-2014.
Zhuang, GC, Lin, YS, Bowles, MW, Heuer, VB, Lever, MA, Elvert, M, Hinrichs, KU. 2017. Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Marine Chemistry 196: 35-46. DOI: http://dx.doi.org/10.1016/j.marchem.2017.07.007.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.