[en] In bTi-alloys, some advances and developments have been reached toward optimizing their mechanical
performance and their processability. However, the applications of these alloys via laser powder bed fusion
(LPBF) are still under investigation. In this work, the processing of bTi-alloys via LPBF and their properties
is reviewed with a focus on six selected metallurgical systems which are expected to be top performance
materials in applications in the aeronautical and biomedical contexts. These six systems promise a
better mechanical and functional performance considering different in-service environments for medical
implants and structural applications. After literature analysis, the applicability of bTi-alloys to be processed via LPBF is then discussed considering the relevant fields of applications.
Disciplines :
Mechanical engineering
Author, co-author :
Colombo-Pulgarin, J.C.; Politecnico di Milano
Biffi, C.A.
Vedani, M.; Politecnico di Milano
Celentano, D.; Pontificia Universidad Católica de Chile - PUC
Sanchez-Egea, A.; Universitat Politecnica di catalunya
Boccardo, A.C.; NUI Galway
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Beta Titanium Alloys Processed by Laser Powder Bed Fusion: a Review
H.E. Sabzi, Powder Bed Fusion Additive Layer Manufacturing of Titanium Alloys, Mater. Sci. Technol., 2019, 35, p 875–890.
G. Mert, Optimization of the Mechanical Properties of Ti-6Al-4V Alloy Produced by Three Dimensional Additive Manufacturing Using Thermomechanical Processes, Ankara, TU, 2017.
I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer, New York, 2015.
D. Gu, Laser Additive Manufacturing of High-Performance Materials, Springer, New York, 2015.
W. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928.
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61, p 315–360.
D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.
H. Ali, H. Ghadbeigi, and K. Mumtaz, Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V, J. Mater. Eng. Perform., 2018, 27, p 4059–4068.
R.P. Kolli and A. Devaraj, A Review of Metastable Beta Titanium Alloys, Met. MDPI, 2018, 8, p 1–41.
M. Markl and C. Körner, Multi-Scale Modeling of Powder-Bed-Based Additive Manufacturing, Annu. Rev. Mater. Res., 2016, 46, p 1–34.
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Review of Selective Laser Melting: Materials and Applications, Appl. Phys. Rev., 2015, 2, p 1–21.
X. Zhang, C. Yocom, B. Mao, and Y. Liao, Microstructure Evolution during Selective Laser Melting of Metallic Materials: A Review, J. Laser Appl., 2019, 31, p 1–19.
W. King, A. Anderson, R. Ferencz, N. Hodge, C. Kamath, S. Khairallah, and A. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2, p 1–26.
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. De Wilson-Heid, A., and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.
A. Leicht, Aspects of Building Geometry and Powder Characteristics in Powder Bed Fusion, Dept. of Industrial and Materials Science. Chalmers University of Technology, Gothenburg, 2018.
T. Mishurova, K. Artzt, J. Haubrich, G. Requena, and G. Bruno, New Aspects About the Search for the Most Relevant Parameters Optimizing SLM Materials, Addit. Manuf., 2019, 25, p 325–334.
J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng, Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, Mater. Des., 2016, 108, p 308–318.
C. Li, J.F. Liu, X.Y. Fang, and Y.B. Guo, Efficient Predictive Model of Part Distortion and Residual Stress in Selective Laser Melting, Addit. Manuf., 2017, 17, p 157–168.
J. Ning, E. Mirkoohi, Y. Dong, D. Sievers, H. Garmestani, and S.Y. Liang, Analytical Modeling of 3D Temperature Distribution in Selective Laser Melting of Ti-6Al-4V Considering Part Boundary Conditions, J. Manuf. Process., 2019, 44, p 319–326.
T. Yu, M. Li, A. Breaux, M. Atri, S. Obeidat, and C. Ma, Experimental and Numerical Study on Residual Stress and Geometric Distortion in Powder Bed Fusion Process, J. Manuf. Process., 2019, 46, p 214–224.
T. Tancogne-Dejean and D. Mohr, Elastically-Isotropic Elementary Cubic Lattices Composed of Tailored Hollow Beams, Extreme Mech. Lett., 2018, 22, p 13–18.
Y. Sha, L. Jiani, C. Haoyu, R.O. Ritchie, and X. Jun, Design and Strengthening Mechanisms in Hierarchical Architected Materials Processed Using Additive Manufacturing, Int. J. Mech. Sci., 2018, 149, p 150–163.
J. Fiocchi, C.A. Biffi, D. Scaccabarozzi, B. Saggin, and A. Tuissi, Enhancement of the Damping Behavior of Ti6Al4V Alloy through the Use of Trabecular Structure Produced by Selective Laser Melting, Adv. Eng. Mater., 2020, 22, p 1–6.
C. Li, H. Lei, Z. Zhang, X. Zhang, H. Zhou, P. Wang, and D. Fang, Architecture Design of Periodic Truss-Lattice Cells for Additive Manufacturing, Addit. Manuf., 2020, 34, p 1–15.
V. Challis, X. Xu, L.C. Zhang, A.P. Roberts, J.F. Grotowski, and T.B. Sercombe, High Specific Strength and Stiffness Structures Produced Using Selective Laser Melting, Mater. Des., 2014, 63, p 783–788.
Y.J. Liu, S.J. Li, L.C. Zhang, Y.L. Hao, and T.B. Sercombe, Early Plastic Deformation Behaviour and Energy Absorption in Porous β-Type Biomedical Titanium Produced by Selective Laser Melting, Scr. Mater., 2018, 153, p 99–103.
Y.J. Liu, H. Wang, S.J. Li, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, and L.C. Zhang, Compressive and Fatigue Behavior of Beta-Type Titanium Porous Structures Fabricated by Electron Beam Melting, Acta Mater., 2017, 126, p 58–66.
Z.H. Jiao, R.D. Xu, H.C. Yu, and X.R. Wu, Evaluation on Tensile and Fatigue Crack Growth Performances of Ti6Al4V Alloy Produced by Selective Laser Melting, Struct. Integr. Procedia, 2017, 7, p 124–132.
C.A. Biffi, J. Fiocchi, E. Ferrario, A. Fornaci, M. Riccio, M. Romeo, and A. Tuissi, Effects of the Scanning Strategy on the Microstructure and Mechanical Properties of a TiAl6V4 Alloy Produced by Electron Beam Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2020, 107, p 4913–4924.
C.A. Biffi, P. Bassani, J. Fiocchi, and A. Tuissi, Microstructural and Mechanical Response of NiTi Lattice 3D Structure Produced by Selective Laser Melting, Met. MDPI, 2020, 10, p 1–9.
Y. Liu, S. Li, W. Hou, S. Wang, Y. Hao, R. Yang, T.B. Sercombe, and L. Zhang, Electron Beam Melted Beta-Type Ti-24Nb-4Zr-8Sn Porous Structures with High Strength-to-Modulus Ratio, J. Mater. Sci. Technol., 2016, 32, p 505–508.
S. Zhao, S.J. Li, S.G. Wang, W.T. Hou, Y. Li, L.C. Zhang, Y.L. Hao, R. Yang, R.D.K. Misra, and L.E. Murr, Compressive and Fatigue Behavior of Functionally Graded Ti-6Al-4V Meshes Fabricated by Electron Beam Melting, Acta Mater., 2018, 150, p 1–15.
Y.J. Liu, D.C. Ren, S.J. Li, H. Wang, L.C. Zhang, and T.B. Sercombe, Enhanced Fatigue Characteristics of a Topology-Optimized Porous Titanium Structure Produced by Selective Laser Melting, Addit. Manuf., 2020, 32, p 1–10.
S. Singamneni, Y. Lv, A. Hewitt, R. Chalk, W. Thomas, and D. Jordison, Additive Manufacturing for the Aircraft Industry: A Review, J. Aeronaut. Aerosp. Eng., 2019, 8, p 1–13.
J. Cotton, R. Briggs, R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. Fanning, State of the Art in Beta Titanium Alloys for Airframe Applications, JOM Miner. Met. Mater. Soc., 2015, 67, p 1281–1303.
D.J. Horst, C.A. Duvoisin, and R. de Almeida Vieira, Additive Manufacturing at Industry 4.0: a Review, Int. J. Eng. Tech. Res. (IJETR), 2018, 8, p 3–8.
D. Renzo, E. Sgambitterra, P. Magarò, F. Furgiuele, C. Maletta, C. A. Biffi, J. Fiocchi, and A. Tuissi, Multiaxial Fatigue Behavior of Additively Manufactured Ti6Al4V Alloy: Axial–Torsional Proportional Loads. Mat. Des. Process., 2020, 1, p 1–10.
L.C. Zhang and H. Attar, Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review, Adv. Eng. Mater., 2016, 18, p 463–475.
S. Ghouse, S. Babu, R. Van Arkel, K. Nai, P. Hooper, and J. Jeffers, The Influence of Laser Parameters and Scanning Strategies on the Mechanical Properties of a Stochastic Porous Material, Mater. Des., 2017, 131, p 498–508.
S. Liu and Y.C. Shin, Additive Manufacturing of Ti6Al4V Alloy: A Review, Mater. Des., 2019, 164, p 1–23.
L.C. Zhang, H. Attar, M. Calin, and J. Eckert, Review on Manufacture by Selective Laser Melting and Properties of Titanium Based Materials for Biomedical Applications, Mater. Technol. Adv. Perform. Mater., 2016, 31, p 66–76.
L.C. Zhang and L.Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21, p 1–29.
S. Singh and S. Ramakrishna, Biomedical Applications of Additive Manufacturing: Present and Future, Curr. Opin. Biomed. Eng., 2017, 2, p 101–115.
C. Leyens and M. Peters, Titanium and Titanium Alloys, WILEY-VCH Verlag GmbH & Co. KGaA, Köln, 2003.
F.F. Schmidt and R.A. Wood, Technical Memorandum: Heat Treatment of Titanium and Titanium Alloys, Marshall Space Flight Center-Nasa, Huntsville, 1966.
F.H. Froes, P.G. Allen, and M. Niinomi, Non-Aerospace Applications of Titanium, The Minerals, Metals & Materials Society, Pennsylvania, 1998.
A. Mouritz, Introduction to Aerospace Materials, Woodhead Publishing Limited, Cambridge, 2012.
D. Laughlin and K. Hono, Physical Metallurgy, 5th ed. Elsevier, Amsterdam, 2014.
P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, Phase Transformation Kinetics during Continuous Heating of a β-Quenched Ti-10V-2Fe-3Al Alloy, Mater. Sci., 2015, 50, p 1412–1426.
C.A. Biffi, J. Fiocchi, F. Valenza, P. Bassani, and A. Tuissi, Selective Laser Melting of NiTi Shape Memory Alloy: Processability, Microstructure, and Superelasticity, Shape Mem. Superelast., 2020, 6, p 342–353.
M. Niinomi and M. Nakai, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone, Int. J. Biomater., 2011, 2011, p 1–10.
M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8, p 3888–3903.
H.X. Yang, S.J. Li, W.T. Hou, Y.L. Hao, R. Yang, and R.D.K. Misra, Recoverable Strain in a New Biomedical Ti-24Nb-4Zr-8Sn Alloy with Cellular Structure Fabricated by Electron Beam Melting, Mater. Technol., 2020, 35, p 881–886.
T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, and T. Nakano, Crystallographic Texture Control of Beta-Type Ti–15Mo–5Zr–3Al Alloy by Selective Laser Melting for the Development of Novel Implants with a Biocompatible Low Young’s Modulus, Scr. Mater., 2017, 132, p 34–38.
J. Martins, R. Oliveira, R. Nogueira, and C. Grandini, Internal Friction and Microstructure of Ti and Ti-Mo Alloys Containing Oxygen, Arch. Metall. Mater., 2016, 61, p 25–30.
L. Qi, K. Zhang, X. Qiao, L. Huang, X. Huang, and X. Zhao, Microstructural Evolution in the Surface of Ti-10V-2Fe-3Al Alloy by Solution Treatments, Prog. Natural Sci. Mater. Int., 2020, 30, p 106–109.
H. Ba, L. Dong, Z. Zhang, and X. Lei, Effects of Trace Si Addition on the Microstructures and Tensile Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy, Metals, 2017, 7, p 1–8.
T. Nagase, T. Hori, M. Todai, S.H. Sun, and T. Nakano, Additive Manufacturing of Dense Components in Beta-Titanium Alloys with Crystallographic Texture from a Mixture of Pure Metallic Element Powders, Mater. Des., 2019, 173, p 1–10.
W. Chen, C. Chen, X. Zi, X. Cheng, X. Zhang, Y.C. Lin, and K. Zhou, Controlling the Microstructure and Mechanical Properties of a Metastable β Titanium Alloy by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 726, p 240–250.
N. Hafeez, S. Liu, E. Lu, L. Wang, R. Liu, W. Lu, and L.C. Zhang, Mechanical Behavior and Phase Transformation of β-type Ti-35Nb-2Ta-3Zr Alloy Fabricated by 3D-Printing, J. Alloys Compd., 2019, 790, p 117–126.
R.P. Kolli, W. Joost, and S. Ankem, Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys, Miner. Met. Mater. Soc., 2015, 67, p 1–8.
V.V. Balasubrahmanyam and Y.V.R.K. Prasad, Hot Deformation Mechanisms in Metastable Beta Titanium Alloy Ti-10V-2Fe-3Al, Mater. Sci. Technol., 2013, 17, p 1–8.
I. Polmear, D. St. John, F.G. Nie, and M. Qian, Titanium Alloys, Light Alloys: Metallurgy of the Light Metals, A.C.A. Garcia, Ed., Butterworth-Heinemann, Oxford, 2017, p 369–460
M. Kaur and K. Singh, Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications, Mater. Sci. Eng. A, 2019, 102, p 844–862.
F.H. Froes and M. Qian, Titanium in Medical and Dental Applications, Elsevier, Duxford, 2018.
Y.J. Liu, X.P. Li, L.C. Zhang, and T.B. Sercombe, Processing and Properties of Topologically Optimised Biomedical Ti–24Nb–4Zr–8Sn Scaffolds Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2015, 642, p 268–278.
L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, Manufacture by Selective Laser Melting and Mechanical Behavior of Biomedical Ti–24Nb–4Zr–8Sn Alloy, Scr. Mater., 2011, 65, p 21–24.
R. Yang, Y. Hao, and S. Li, Development and Application of Low-Modulus Biomedical Titanium Alloy Ti2448, Biomedical Engineering, Trends in Materials Science, A. Laskovski, Ed., IntechOpen, London, 2011, p 225–248
Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T. Sercombe, and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67.
C. Yang, Z. Zhang, S. Li, Y. Liu, T. Sercombe, W. Hou, P. Zhang, Y. Zhu, Y. Hao, Z. Zhang, and R. Yang, Simultaneous Improvement in Strength and Plasticity of Ti-24Nb-4Zr-8Sn Manufactured by Selective Laser Melting, Mater. Des., 2018, 157, p 52–59.
P. Qin, Y. Chen, Y.J. Liu, J. Zhang, L.Y. Chen, Y. Li, X. Zhang, C. Cao, H. Sun, and L.C. Zhang, Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic β Ti-24Nb-4Zr-8Sn Alloy, ACS Biomater. Sci. Eng., 2019, 5, p 1141–1149.
Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, and R. Yang, Elastic Deformation Behaviour of Ti-24Nb-4Zr-7.9Sn for Biomedical Applications, Acta Biomater., 2007, 3, p 277–286.
X. Li, S. Ye, X. Yuan, and P. Yu, Fabrication of Biomedical Ti-24Nb-4Zr-8Sn Alloy with High Strength and Low Elastic Modulus by Powder Metallurgy, J. Alloys Compd., 2019, 772, p 968–977.
W.L. Liu, Y.Q. Zhang, Y.H. Jiang, and R. Zhou, Effects of Heat Treatment on Microstructure and Mechanical Properties of Ti-24Nb-4Zr-8Sn Alloy by Spark Plasma Sintering, Chin. J. Nonferr. Met., 2017, 27, p 1155–1161.
Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian, Sintering of Ti-10V-2Fe-3Al and Mechanical Properties, Mater. Sci. Eng., 2011, 528, p 6719–6726.
C. Li, J. Chen, Y.J. Ren, W. Li, J.J. He, and J.H. Chen, Effect of Solution Heat Treatment on the Stress-Induced Martensite Transformation in Two New Titanium Alloys, J. Alloys Compd., 2015, 641, p 192–200.
P. Skubisz, Ł Lisiecki, M. Paćko, T. Skowronek, P. Micek, and T. Tokarski, Effect of High Strain Rate Beta Processing on Microstructure and Mechanical Properties of Near-β Titanium Alloy Ti-10V-2Fe-3Al, J. Mater. Des. Appl., 2018, 232, p 181–190.
R. Bogucki, K. Mosór, and M. Nykiel, Effect of Heat Treatment Conditions on the Morphology of α Phase and Mechanical Properties in Ti-10V-2Fe-3Al Titanium Alloy, Arch. Metall. Mater., 2014, 59, p 1269–1273.
C. Li, J. Chen, W. Li, J.J. He, W. Qiu, Y.J. Ren, J.L. Chen, and J.H. Chen, Study on the Relationship between Microstructure and Mechanical Property in a Metastable β Titanium Alloy, J. Alloys Compd., 2015, 627, p 222–230.
X. Ma, F. Li, J. Cao, Z. Sun, Q. Wan, J. Li, and Z. Yuan, Study on the Deformation Behavior of β phase in Ti-10V-2Fe-3Al Alloy by micro-indentation, J. Alloys Compd., 2017, 703, p 298–308.
D.B.A. Sagar, B. Vikas, B. Saha, N. Narasaiah, P. Jayapal, G.D.J. Ram, and M.S.K. Rao, Study of Microstructure and Mechanical Properties of Friction Welded Metastable Beta Titanium Alloy Titan 1023, Mater. Today Proc., 2018, 5, p 20760–20768.
L. Qi, X. Qiao, L. Huang, X. Huang, and X. Zhao, Effect of Structural Stability on the Stress Induced Martensitic Transformation in Ti-10V-2Fe-3Al Alloy, Mater. Sci. Eng., 2019, 756, p 381–388.
C. Li, X. Wu, J.H. Chen, and S. Van der Zwaag, Influence of α Morphology and Volume Fraction on the Stress-Induced Martensitic Transformation in Ti-10V-2Fe-3Al, Mater. Sci. Eng., 2011, 528, p 5854–5860.
R.R. Boyer and R.D. Briggs, The Use of Beta Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2005, 14, p 681–685.
C. Qiu and Q. Liu, Multi-scale Microstructural Development and Mechanical Properties of a Selectively Laser Melted Beta Titanium Alloy, Addit. Manuf., 2019, 30, p 1–13.
Q. Liu and C. Qiu, Variant Selection of α Precipitation in a Beta Titanium Alloy during Selective Laser Melting and Its Influence on Mechanical Properties, Mater. Sci. Eng., 2020, 784, p 1–9.
H. Azizi, H. Zurob, B. Bose, S. Reza Ghiaasiaan, X. Wang, S. Coulson, V. Duz, and A.B. Phillion, Additive Manufacturing of a Novel Ti-Al-V-Fe Alloy Using Selective Laser Melting, Addit. Manuf., 2018, 21, p 529–535.
A.G. Illarionov, A.V. Trubochkin, A.M. Shalaev, S.M. Illarionova, and A.A. Popov, Isothermal Decomposition of β Solid Solution in Titanium Alloy Ti-10V-2Fe-3Al, Met. Sci. Heat Treat., 2017, 58, p 674–680.
C. Zopp, S. Blümer, F. Schubert, and L. Kroll, Processing of a Metastable Titanium Alloy (Ti-5553) by Selective Laser Melting, Ain Shams Eng. J., 2017, 8, p 475–479.
Q. Zhao, F. Yang, R. Torrens, and L. Bolzoni, Allotropic Phase Transformation and High-Temperature Tensile Deformation Behaviour of Powder Metallurgy Ti-5553 Alloy, Int. J. Refract. Met. Hard Mater., 2020, 90, p 1–8.
H. Schwab, M. Bönisch, L. Giebeler, T. Gustmann, J. Eckert, and U. Kühn, Processing of Ti-5553 with Improved Mechanical Properties via an In-Situ Heat Treatment Combining Selective Laser Melting and Substrate Plate Heating, Mater. Des., 2017, 130, p 83–89.
H. Schwab, F. Palm, U. Kühn, and J. Eckert, Microstructure and Mechanical Properties of the Near-Beta Titanium Alloy Ti-5553 Processed by Selective Laser Melting, Mater. Des., 2016, 105, p 75–80.
T. Maimaitiyili, K. Mosur, T. Kurzynowski, N. Casati, and H. Van Swygenhoven, Phase Studies of Additively Manufactured Near Beta Titanium Alloy-Ti55511, Materials, 2020, 13, p 1–14.
M. Malý, C. Höller, M. Skalon, B. Meier, D. Koutný, R. Pichler, C. Sommitsch, and D. Paloušek, Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting, MDPI Mater., 2019, 12, p 1–13.
H. Carlton, K. Klein, and J. Elmer, Evolution of Microstructure and Mechanical Properties of Selective Laser Melted Ti-5Al-5V-5Mo-3Cr After Heat Treatments, Sci. Technol. Weld. Join., 2019, 24, p 465–473.
K. Sankaran and R. Mishra, Metallurgy and Design of Alloys with Hierarchical Microstructures, Elsevier, Amsterdam, 2017.
S. Veek, D. Lee, R. Boyer, and R. Briggs, The Castability of Ti-5553 Alloy, Adv. Mater. Process., 2004, 162, p 47–49.
P. Barriobero-Vila, J. Gussone, K. Kelm, J. Haubrich, A. Stark, N. Schell, and G. Requena, An In Situ Investigation of the Deformation Mechanisms in a β-Quenched Ti-5Al-5V-5Mo-3Cr Alloy, Mater. Sci. Eng., 2018, 717, p 134–143.
C.G. Rhodes and N.E. Paton, The Influence of Microstructure on Mechanical Properties in Ti-3AI-8V-6Cr-4Mo-4Zr (Beta C), Metall. Trans., 1977, 8A, p 1749–1761.
V. Tungala, A. Dutt, D. Choudhuri, J. Mishra, S. Tamirisakandala, K. Cho, and R. Brennan, Friction Stir Processing of Beta C and Ti-185: A Unique Pathway to Engineer Microstructures for Exceptional Properties in β Titanium Alloys, Metall. Mater. Trans., 2019, 50A, p 4075–4084.
C. Madikizela, L.A. Cornish, L.H. Chown, and M. Möller, Microstructure and Mechanical Properties of Selective Laser Melted Ti-3Al-8V-6Cr-4Zr-4Mo Compared to Ti-6Al-4V, Mater. Sci. Eng., 2019, 747, p 225–231.
M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, and M.S. Dargusch, Promoting the Columnar to Equiaxed Transition and Grain Refinement of Titanium Alloys during Additive Manufacturing, Acta Mater., 2019, 168, p 261–274.
M.J. Bermingham, D. Kent, B. Pace, J.M. Cairney, and M.S. Dargusch, High Strength Heat-Treatable β-Titanium Alloy for Additive Manufacturing, Mater. Sci. Eng., 2020, 791, p 1–7.
Z. Zhu, H. Songxiao, Y.E. Wenjun, and Z. Shuqi, Development of Beta Titanium Alloys. Titanium'99: Science and Technology (1999).
D.M. Berczik, Age Hardenable Beta Titanium Alloy. United States Patent 5,176,762, 5 January 1993.
S. Zhang, W. Zeng, X. Gao, D. Zhou, and Y. Lai, Role of titanium carbides on microstructural evolution of Ti-35V-15Cr-0.3Si-0.1C alloy during hot working, J. Alloys Compd., 2016, 684, p 201–210.
F.S. Sun and E.J. Lavernia, Creep Behavior of Nonburning Ti-35V-15Cr-xC Alloys, J. Mater. Eng. Perform., 2005, 14, p 784–787.
X.X. Wang, W.Q. Wang, and Y.Q. Zhang, Effect of Heat Treatment and Thermal Exposure on Microstructure of the Alloy C+ Bars, Mater. Sci. Forum, 2013, 765, p 506–510.
R.W. Schutz, Environmental Behavior of Beta Titanium Alloys, J. Miner. Met. Mater. Soc. (TMS), 1994, 46, p 24–29.
Y. Lai, P. Zhan, X. Zhan, X. Liu, Y. Feng, H. Kou, F. Ma, and W. Zeng, Physical Properties of WSTi3515S Burn-Resistant Titanium Alloy, Rare Met., 2016, 35, p 361–366.
Q. Wang, C. Han, T. Choma, Q. Wei, Y. Yan, B. Song, and Y. Shi, Effect of Nb Content on Microstructure, Property and In Vitro Apatite-Forming Capability of Ti-Nb Alloys Fabricated via Selective Laser Melting, Mater. Des., 2017, 126, p 268–277.
J.C. Wang, Y.J. Liu, P. Qin, S.X. Liang, T.B. Sercombe, and L.C. Zhang, Selective Laser Melting of Ti-35Nb Composite from Elemental Powder Mixture: Microstructure, Mechanical Behavior and Corrosion Behavior, Mater. Sci. Eng. A, 2019, 760, p 214–224.
H. Schwab, K.G. Prashanth, L. Löber, U. Kühn, and J. Eckert, Selective Laser Melting of Ti-45Nb Alloy, Metals, 2015, 5, p 686–694.
J.P. Luo, Y.J. Huang, J.Y. Xu, J.F. Sun, M.S. Dargusch, C.H. Hou, L. Ren, R.Z. Wang, T. Ebel, and M. Yan, Additively Manufactured Biomedical Ti-Nb-Ta-Zr Lattices with Tunable Young’s Modulus: Mechanical Property, Biocompatibility, and Proteomics Analysis, Mater. Sci. Eng. C, 2020, 114, p 1–16.
L. Zhou, T. Yuan, R. Li, J. Tang, M. Wang, and F. Mei, Anisotropic Mechanical Behavior of Biomedical Ti-13Nb-13Zr Alloy Manufactured by Selective Laser Melting, J. Alloys Compd., 2018, 762, p 289–300.
L. Zhou, T. Yuan, J. Tang, L. Li, F. Mei, and R. Li, Texture Evolution, Phase Transformation and Mechanical Properties of Selective Laser Melted Ti-13Nb-13Zr, Mater. Charact., 2018, 145, p 185–195.
R. Lisboa, W. Capute, L. Deng, T. Gustmann, S. Pauly, C. Shyinti, and P. Gargarella, Processing a Biocompatible Ti–35Nb–7Zr–5Ta Alloy by Selective Laser Melting, J. Mater. Res., 2020, 35, p 1143–1153.
X. Cheng, S. Liu, C. Chen, W. Chen, M. Liu, R. Li, X. Zhang, and K. Zhou, Microstructure and Mechanical Properties of Additive Manufactured Porous Ti-33Nb-4Sn Scaffolds for Orthopaedic Applications, J. Mater. Sci. Mater. Med., 2019, 30, p 1–12.
Y. Li, Y. Ding, K. Munir, J. Lin, M. Brandt, A. Atrens, Y. Xiao, J.R. Kanwar, and C. Wen, Novel β-Ti35Zr28Nb Alloy Scaffolds Manufactured Using Selective Laser Melting for Bone Implant Applications, Acta Biomater., 2019, 87, p 273–284.
R. Ummethala, P. Karamched, S. Rathinavelu, N. Singh, A. Aggarwal, K. Sun, E. Ivanov, L. Kollo, I. Okulov, J. Eckert, and K.G. Prashanth, Selective Laser Melting of High-Strength, Low-Modulus Ti–35Nb–7Zr–5Ta Alloy, Materialia, 2020, 14, p 1–9.
Y.J. Liu, Y.S. Zhang, and L.C. Zhang, Transformation-Induced Plasticity and High Strength in Beta Titanium Alloy Manufactured by Selective Laser Melting, Materialia, 2019, 6, p 1–5.
N. Hafeez, J. Liu, L. Wang, D. Wei, Y. Tang, W. Lu, and L.C. Zhang, Superelastic Response of Low-Modulus Porous Beta-Type Ti-35Nb-2Ta-3Zr Alloy Fabricated by Laser Powder Bed Fusion, Addit. Manuf., 2020, 34, p 1–9.
J. Wang, Y. Liu, C.D. Rabadia, S.X. Liang, T.B. Sercombe, and L.C. Zhang, Microstructural Homogeneity and Mechanical Behavior of a Selective Laser Melted Ti-35Nb Alloy Produced from an Elemental Powder Mixture, J. Mater. Sci. Technol., 2021, 61, p 221–233.
C.A. Biffi, A.G. Demir, M. Coduri, B. Previtali, and A. Tuissi, Laves Phases in Selective Laser Melted TiCr1.78 Alloys for Hydrogen Storage, Mater. Lett., 2018, 226, p 71–74.