[en] In Central Africa more than 75% of the total log production is focussed on only four timber species, whose populations are progressively being depleted. Reducing the impact on those flagship species by diversifying the exploitation could lead to better forest management in the long term. Pachyelasma tessmannii is a species whose trees are among the largest in the forests of Central Africa. Yet the properties of its wood are poorly documented. The aim of this study is to evaluate the possibility of using this species with a view to diversify forest production in Central Africa. Its physical and mechanical properties, its natural durability, and quantified radial variation were investigated. By using Hierarchical Clustering on Principal Component (HCPC), heartwood was classified among 98 other Central African timber species. P. tessmannii has a wavy grain and a coarse texture with a wide well-discernible sapwood. The wood is “heavy” with disadvantageous dimensional stability parameters. All mechanical properties are “medium”, except for “low” impact bending strength. Heartwood is very durable against white and brown rot. All properties were significantly influenced by radial variation, except for axial compression strength. According to the HCPC, P. tessmannii should be suitable for stairs (inside/outside), flooring, decking, veneer (back and face of plywood), sliced veneer, furniture (inside/outside), exterior panelling, cabinetry, and joinery (inside/outside). The results obtained concerning the radial variation of basic density could suggest that the species is light-demanding. Considering that the sustainable exploitation of light-demanding species is often confronted with the problem of their lack of regeneration in closed-canopy rainforests, further studies are needed before promoting this species on international markets.
Disciplines :
Biotechnologie
Auteur, co-auteur :
Doucet, Robin ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Doucet, Jean-Louis ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Lejeune, Philippe ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Verheyen, Cécile; Centre de recherche Agronomique Wallon
De Mil, Tom ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Martin, Patrick; Expertise Bois (EXB)
Lagoute, Paul; Pallisco SARL
Jourez, Benoît ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Langue du document :
Anglais
Titre :
Wood description and timber use investigation of Pachyelasma tessmannii (Harms) Harms
Date de publication/diffusion :
19 octobre 2021
Titre du périodique :
European Journal of Wood and Wood Products
ISSN :
0018-3768
eISSN :
1436-736X
Maison d'édition :
Springer, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Intitulé du projet de recherche :
Essence à Haut Potentiel de valorisation (EHPval)
Organisme subsidiant :
Programme de Promotion de l'Exploitation Certifiée des Forêts (PPECF)
AFNOR (1985a) NF B51-005: Bois. Détermination de la masse volumique (Wood. Density determination). Association Française de Normalisation, Paris
AFNOR (1985b) NF B51-006: Bois. Détermination du retrait (Wood. Shrinkage determination). Association Française de Normalisation, Paris
AFNOR (1985c) NF B51-007: Bois. Essai de compression axiale (Wood. Axial compression strength determination). Association Française de Normalisation, Paris
AFNOR (1985d) NF B 51-013: Bois. Détermination de la dureté de Monnin (Wood. Monnin hardness determination). Association Française de Normalisation, Paris
AFNOR (1987a) NF B51-016: Bois. Détermination du module d’élasticité en flexion statique de petites éprouvettes sans défauts (Wood. Young modulus determination on defect-free samples). Association Française de Normalisation, Paris
AFNOR (1987b) NF B51-008: Bois. Essai de flexion statique (Wood. Static bending strength determination). Association Française de Normalisation, Paris
Alroy J (2017) Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci USA 114:6056–6061
ATIBT (2006) La lettre de l’ATIBT n°24: Statistiques 2005 (ATIBT letter n°24: 2005 statistics). Association Technique Internationale de Bois Tropicaux, Paris
ATIBT (2007) La lettre de l’ATIBT n°26: Statistiques 2006 (ATIBT letter n°26: 2006 statistics). Association Technique Internationale de Bois Tropicaux, Paris
ATIBT (2016) Nomenclature générale des bois tropicaux (Tropical timber nomenclature). ATIBT, Association Technique Internationale de Bois Tropicaux, Nogent-sur-Marne
BAD (2019) Développement intégré et durable de la filière bois dans le Bassin du Congo: Opportunités, défis et recommandations opérationnelles (Tropical timber market sustainable development in the Congo Basin: Opportunities, challenges and operational recommendations). Banque Africaine de Développement. https://www.afdb.org/fr/documents/document/rapport-strategique-regional-developpement-integre-et-durable-de-la-filiere-bois-dans-le-bassin-du-congo-109428
Bayol N, Demarquez B, De Wasseige C, Eba’a Atyi R, Fisher JF, Nasi R, Pasquier A, Rossi X, Steil M, Vivien C (2012) Forest Management and the Timber Sector in Central Africa. In: De Wasseige C, De Marcken P, Bayol N, Hiol-Hiol F, Mayaux P, Desclée B, Billand A, Nasi R (eds) The forests of the Congo Basin: State of the forest 2010. Publications Office of the European Union, Luxembourg, pp 43–62
Bhat KM, Priya PB, Rugmini P (2001) Characterisation of juvenile wood in teak. Wood Sci Technol 34:517–532
Biwolé AB (2015) Origine et dynamique des populations d’arbres des forêts denses humides d’Afrique Centrale, le cas de Lophira alata Banks ex Gaertn C.F. (Ochnaceae) (Central Africa rainforest trees origin and population dynamic, the case of Lophira alata Bank ex Gaertn C.F. (Ochnaceae)). Ph.D. Thesis, Université de Liège - Gembloux Agro-Bio tech, Belgium
Boampong E, Effah B, Antwi K et al (2015) Factors influencing the choice of timber for furniture and joinery production in Ghana. Eur J Eng Technol 3:48–59
Bossu J, Beauchêne J, Estevez Y et al (2016) New insights on wood dimensional stability influenced by secondary metabolites: the case of a fast-growing tropical species Bagassa guianensis aubl. PLoS ONE 11:150777
Brémaud I, Amusant N, Minato K et al (2011a) Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub.). Wood Sci Technol 45:461–472
Brémaud I, Gril J, Thibaut B (2011b) Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data. Wood Sci Technol 45:735–754
CEN (2004) CEN/TR 14734:2004: Durability of wood and wood-based products—determination of treatability of timber species to be impregnated with wood preservatives—laboratory method. Comité Européen de Normalisation, Bruxelles
CEN (2005) CEN 15083-1: Durability of wood and wood-based products—determination of the natural durability of solid wood against wood-destroying fungi, test methods—Part1: Basidiomycetes. Comité Européen de Normalisation, Bruxelles
Chaowana P (2013) Bamboo: an alternative raw material for wood and wood-based composites. J Mater Sci Res 2:90
CIRAD (2015) Les principales caractéristiques technologiques de 245 essences forestières tropicales et tempérées. Tropix v 7.5.1 (The main technological characteristics of 245 tropical and temperate forest species. Tropix v 7.5.1). Software. Centre de cooperation Internationale de Recherche Agronomique pour le Développement, Paris, France
CJBG (2018) Base de données des plantes d’Afrique (African plants database). Conservatoire et Jardin Botanique de la ville de Genève http://www.villege.ch/musinfo/bd/cjb/africa/details.php?langue=fr&id=69634. Accessed 13 May 2020
Dalois C (1990) Manuel de sciage et d’affûtage (Sawing and sharpening guide). Quae, Versailles
Dalois C (1993) Le sciage sur quartier des bois tropicaux modèle de scierie (Quarter-sawing a model for tropical sawmill). Bois Forets Des Trop 237:61–67
de Almeida TH, de Almeida DH, De Araujo VA et al (2017) Density as estimator of dimensional stability quantities of Brazilian tropical woods. BioResources 12:6579–6590
Deklerck V, De Mil T, Kondjo P et al (2019) Sleeping beauties in materials science: unlocking the value of xylarium specimens in the search for timbers of the future. Holzforschung 73:889–897
Doucet JL, Kouadio YL, Monticelli D, Lejeune P (2009) Enrichment of logging gaps with moabi (Baillonella toxisperma Pierre) in a Central African rain forest. For Ecol Manag 258:2407–2415
Doucet JL, Daïnou K, Ligot G et al (2016) Enrichment of Central African logged forests with high-value tree species: testing a new approach to regenerating degraded forests. Int J Biodivers Sci Ecosyst Serv Manag 12:83–95
Evans R, Stringer S, Kibblewhite RP (2000) Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J 53:450–457
FAO (2011) The State of Forests in the Amazon Basin, Congo Basin and Southeast Asia. Food and Agriculture Organization. http://www.fao.org/3/i2247e/i2247e00.pdf.
Fayolle A, Picard N, Doucet JL et al (2014) A new insight in the structure, composition and functioning of central African moist forests. For Ecol Manag 329:195–205
Fays R (2008) Des forêts.. Des bois.. (Some forest… Some wood…). Richard Fays, Impribeau Sainte-Ode, Brussels. p 1022
FRM (2018) Vision stratégique et industrialisation de la filière bois dans les 6 pays du Bassin du Congo, Horizon 2030 (Strategic vision and industrialization of the timber sector in the 6 Congo Basin countries, Horizon 2030). Forest Resources Management, Montpellier
Gartner BL, Milota MR, Hua L (1997) Variation in the anatomy and specific gravity of wood within and between trees of red alder (Alnus rubra Bong.). Wood Fiber Sci 29:10–20
Gerhards CC (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci 14:4–36
Harris JM (1989) Spiral grain and wave phenomena in wood formation. Springer, Berlin
Hernández RE (2007) Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods. Wood Sci Technol 41:249–265
Hernández RE, Almeida G (2003) Effects of wood density and interlocked grain on the shear strength of three Amazonian tropical hardwoods. Wood Fiber Sci 35:154–166
Hillaby A (2000) The visual context of wood. Gt Vancouver Woodturners Guild News L 1:1–6
IBN (1956) NBN 225: Bois. Méthodes d’essai de qualification (Wood. Qualification test method). Institut Belge de Normalisation, Bruxelles
Iida Y, Poorter L, Sterck FJ et al (2012) Wood density explains architectural differentiation across 145 co-occurring tropical tree species. Funct Ecol 26:274–282
Ishiguri F, Eizawa J, Saito Y et al (2007) Variation in the wood properties of Paraserianthes falcataria planted in Indonesia. IAWA J 28:339–348
ISO (2012) Wood. Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens (ISO Standard No. 3129). International Organization for Standardization, Geneva
Karsenty A, Gourlet-Fleury S (2006) Assessing sustainability of logging practices in the Congo Basin’s managed forests: the issue of commercial species recovery. Ecol Soc 11:13
Karsenty A, Drigo IG, Piketty MG, Singer B (2008) Regulating industrial forest concessions in Central Africa and South America. For Ecol Manag 256:1498–1508
Keller R (2009) Des caractéristiques nouvelles pour l’étude des propriétés mécaniques des bois: les composantes de la densité (New characteristics for the study of the mechanical properties of wood: density compenents). Ann Des Sci for 25:237–249
King DA, Davies SJ, Tan S, Noor NSM (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680
Kollmann FFP, Coté WAJ (1968) Principles of wood science and technology. Springer, Berlin
Kord B, Kialashaki A, Kord B (2010) The within-tree variation in wood density and shrinkage, and their relationship in Populus euramericana. Turk J Agric for 34:121–126
Kretschmann DE, Green DW (1996) Modeling moisture content-mechanical property relationships for clear southern pine. Wood Fiber Sci 28:320–337
Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632
Lê S, Josse J, Husson F (2008) FactoMineR: a package for multivariate analysis. J Stat Softw 25:1–18
Lemmens RHMJ, Roeland HMJ, Louppe D, Oteng-Amoako A, Corbière H (2012) Plant ressources of tropical Africa. Prota 7(2): timbers 2. PROTA, Wageningen
Lever J, Krzywinski M, Altman N (2017) Points of significance: principal component analysis. Nat Methods 14:641–642
Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128(3):257–269
Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood Part 1. Swelling in water. Springer, Belrin
Marsoem N, Kikata Y (1987) The effect of interlocked grain on the mechanical properties of white meranti. Bull Nagoya Univ 9:51–57
Martin P, Vernay M (2016) Guide d’utilisation des bois africains éco-certifiés en Europe (Guide to the use of eco-certified African woods in Europe). ATIBT, Paris
Martínez-Garza C, Bongers F, Poorter L (2013) Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For Ecol Manag 303:35–45
Mitchard ETA (2018) The tropical forest carbon cycle and climate change. Nature 559:527–534
Morin-Rivat J, Fayolle A, Favier C et al (2017) Present-day central African forest is a legacy of the 19th century human history. Elife 6:e20343
Nature + asbl (2015) Plan d’aménagement: unité forestière d’aménagement N° 10–47, Région de l’Est (Management plan: forest management unit n°10–47, Est region)
Normand D, Paquis J (1976) Manuel d’identification des bois commerciaux (Guide for commercial timber identification). Centre Technique Forestier Tropical (CTFT), Nogent-sur-Marne
Ocloo J, Laing E (2003) Correlation of relative density and strength properties with anatomical properties of the wood of Ghanaian Celtis species. Discov Innov 15:186–196
Peña-Claros M, Peters EM, Justiniano MJ et al (2008) Regeneration of commercial tree species following silvicultural treatments in a moist tropical forest. For Ecol Manag 255:1283–1293
Plourde BT, Boukili VK, Chazdon RL (2015) Radial changes in wood specific gravity of tropical trees: inter- and intraspecific variation during secondary succession. Funct Ecol 29:111–120
RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston
Rungwattana K, Hietz P (2018) Radial variation of wood functional traits reflect size-related adaptations of tree mechanics and hydraulics. Funct Ecol 32:260–272
Sallenave P (1955) Propriétés physiques et mécaniques des bois tropicaux de l’union française (Physical and mechanical properties of French union tropical timber species). Centre Technique Forestier Tropical (CTFT) Nogent-sur-Marne
Schmelzer GH, Gurib-Fakim A (2008) Medicinal plants 1. PROTA, Wageningen
Schulgasser K, Witztum A (2015) How the relationship between density and shrinkage of wood depends on its microstructure. Wood Sci Technol 49:389–401
Sholadoye IO, Abubakar I, Annafi QB, Ejeh SP (2016) Evaluation of some wood properties of Nigeria timber using four-point bending test. Adv Multidiscip Res J 2:133–144
Slik JWF, Arroyo-Rodríguez V, Aiba SI et al (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci USA 112:7472–7477
Spear M, Walker JCF (2006) Dimensional instability in timber. In: Walker JCF (ed) Primary wood processing: principles and practice. Springer, Doordrecht, pp 95–120
Tsehaye A, Walker JCF (1995) Spiral grain in Canterbury Pinus radiata: within- and between-tree variations and effect on mechanical properties. N Z J for Sci 25:358–366
USDA (2010) Wood handbook: wood as an engineering material. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison
Weddell E (1961) Influence of interlocked grain on the bending strength of timber, with particular reference to utile and greenheart. J Inst Wood Sci 7:56–72
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York
Wickham H, Averick M, Bryan J et al (2019) Welcome to the Tidyverse. J Open Source Softw 4:1686
Wiemann M, Williamson G (1988) Extreme radial changes in wood specific gravity in some tropical pioneers. Wood Fiber Sci 20:344–349
Wiemann M, Williamson G (1989) Radial gradients in the specific gravity of wood in some tropical and temperate trees. For Sci 35:197–210
Woodcock D, Shier A (2002) Wood specific gravity and its radial variations: the many ways to make a tree. Trees Struct Funct 16:437–443
Woodcock DW, Shier A (2003) Does canopy position affect wood specific gravity in temperate forest trees? Ann Bot 91:529–537
Zhang SY (1997) Wood specific gravity-mechanical relationship at species level. Springer, Berlin
Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees. Springer, Berlin