[en] The Ultraviolet Spectrograph (UVS) instrument on the Juno mission records far-ultraviolet reflected sunlight from Jupiter. These spectra are sensitive to the abundances of chemical species in the upper atmosphere and to the distribution of the stratospheric haze layer. We combine observations from the first 30 perijoves of the mission in order to study the meridional distribution of acetylene (C2H2) in Jupiter's stratosphere. We find that the abundance of C2H2 decreases toward the poles by a factor of 2-4, in agreement with previous analyses of mid-infrared spectra. This result is expected from insolation rates: near the equator, the UV solar flux is higher, allowing more C2H2 to be generated from the UV photolysis of CH4. The decrease in abundance toward the poles suggests that horizontal mixing rates are not rapid enough to homogenize the latitudinal distribution.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Giles, Rohini S.
Greathouse, Thomas K.
Hue, Vincent
Gladstone, G. Randall
Melin, Henrik
Fletcher, Leigh N.
Irwin, Patrick G. J.
Kammer, Joshua A.
Versteeg, Maarten H.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bétremieux, Y., & Yelle, R. V. (1999). HST detection of H2 Raman scattering in the Jovian atmosphere. Icarus, 142(2), 324–341. https://doi.org/10.1006/icar.1999.6217
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/978-94-024-1560-5_2
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122(8), 7985–7996. https://doi.org/10.1002/2017ja024370
Drossart, P., Bézard, B., Atreya, S. K., Lacy, J., Serabyn, E., Tokunaga, A., & Encrenaz, T. (1986). Enhanced acetylene emission near the north pole of Jupiter. Icarus, 66(3), 610–618. https://doi.org/10.1016/0019-1035(86)90094-1
Fletcher, L. N., Greathouse, T. K., Orton, G. S., Sinclair, J. A., Giles, R. S., Irwin, P. G. J., & Encrenaz, T. (2016). Mid-infrared mapping of Jupiter's temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus, 278, 128–161. https://doi.org/10.1016/j.icarus.2016.06.008
Fletcher, L. N., Orton, G. S., de Pater, I., Edwards, M. L., Yanamandra-Fisher, P. A., Hammel, H. B., et al. (2011). The aftermath of the July 2009 impact on Jupiter: Ammonia, temperatures, and particulates from Gemini thermal infrared spectroscopy. Icarus, 211(1), 568–586. https://doi.org/10.1016/j.icarus.2010.09.012
Fouchet, T., Lellouch, E., Bézard, B., Feuchtgruber, H., Drossart, P., & Encrenaz, T. (2000). Jupiter's hydrocarbons observed with ISO-SWS: Vertical profiles of C2H6 and C2H2, detection of CH3C2H. Astronomy & Astrophysics, 355, L13–L17.
Giles, R. S. (2021). Meridional variations of C2H2 in Jupiter's stratosphere from Juno UVS observations (Vol. 2). Mendeley Data. https://doi.org/10.17632/32txrwstzt.2
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1–4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gladstone, G. R., & Yung, Y. L. (1983). An analysis of the reflection spectrum of Jupiter from 1500 to 1740 Å. The Astrophysical Journal, 266(1), 415–424. https://doi.org/10.1086/160789
Hue, V., Hersant, F., Cavalié, T., Dobrijevic, M., & Sinclair, J. (2018). Photochemistry, mixing, and transport in Jupiter's stratosphere constrained by Cassini. Icarus, 307, 106–123. https://doi.org/10.1016/j.icarus.2018.02.018
Irwin, P. G. J. (2020). NEMESIS/Radtrancode software (Version 1.0). Zenodo. https://doi.org/10.5281/zenodo.4303976
Irwin, P. G. J., Teanby, N. A., de Kok, R., Fletcher, L. N., Howett, C. J. A., Tsang, C. C. C., et al. (2008). The NEMESIS planetary atmosphere radiative transfer and retrieval tool. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(6), 1136–1150. https://doi.org/10.1016/j.jqsrt.2007.11.006
Kammer, J. A., Hue, V., Greathouse, T. K., Gladstone, G. R., Davis, M. W., & Versteeg, M. H. (2019). Planning operations in Jupiter's high-radiation environment: Optimization strategies from Juno-ultraviolet spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 5(2), 027001. https://doi.org/10.1117/1.jatis.5.2.027001
Kim, S. J., Caldwell, J., Rivolo, A. R., Wagener, R., & Orton, G. S. (1985). Infrared polar brightening on Jupiter: III. Spectrometry from the Voyager 1 IRIS experiment. Icarus, 64(2), 233–248. https://doi.org/10.1016/0019-1035(85)90088-0
Kostiuk, T., Buhl, D., Espenak, F., Romani, P., Bjoraker, G., Fast, K., et al. (1996). Stratospheric ammonia on Jupiter after the SL9 collision. Icarus, 121(2), 431–441. https://doi.org/10.1006/icar.1996.0098
Kunde, V. G., Flasar, F. M., Jennings, D. E., Bézard, B., Strobel, D. F., Conrath, B. J., et al. (2004). Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment. Science, 305(5690), 1582–1586. https://doi.org/10.1126/science.1100240
Lellouch, E., Bézard, B., Strobel, D. F., Bjoraker, G. L., Flasar, F. M., & Romani, P. N. (2006). On the HCN and CO2 abundance and distribution in Jupiter's stratosphere. Icarus, 184(2), 478–497. https://doi.org/10.1016/j.icarus.2006.05.018
Maguire, W. C., Samuelson, R. E., Hanel, R. A., & Kunde, V. G. (1984). Latitudinal variation of acetylene and ethane in the Jovian atmosphere from Voyager IRIS observations. Bulletin of the American Astronomical Society, 16, 647.
Melin, H., Fletcher, L. N., Donnelly, P. T., Greathouse, T. K., Lacy, J. H., Orton, G. S., et al. (2018). Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter. Icarus, 305(1), 301–313. https://doi.org/10.1016/j.icarus.2017.12.041
Melin, H., Fletcher, L. N., Irwin, P. G. J., & Edgington, S. G. (2020). Jupiter in the ultraviolet: Acetylene and ethane abundances in the stratosphere of Jupiter from Cassini observations between 0.15 and 0.19 m. The Astronomical Journal, 159(6), 291. https://doi.org/10.3847/1538-3881/ab91a6
Morrissey, P. F., Feldman, P. D., McGrath, M. A., Wolven, B. C., & Moos, H. W. (1995). The ultraviolet reflectivity of Jupiter at 3.5 Å resolution from Astro-1 and Astro-2. The Astrophysical Journal Letters, 454(1), L65. https://doi.org/10.1086/309763
Moses, J. I., Fouchet, T., Bézard, B., Gladstone, G. R., Lellouch, E., & Feuchtgruber, H. (2005). Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research: Planets, 110(E8), E08001. https://doi.org/10.1029/2005je002411
Moses, J. I., Fouchet, T., Yelle, R. V., Friedson, A. J., Orton, G. S., Bézard, B., & et al. (2004). The stratosphere of Jupiter. In F. Bagenal, T. E. Dowling, W. B. McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere. Cambridge University Press.
Nixon, C. A., Achterberg, R. K., Conrath, B. J., Irwin, P. G. J., Teanby, N. A., Fouchet, T., et al. (2007). Meridional variations of C2H2 and C2H6 in Jupiter's atmosphere from Cassini CIRS infrared spectra. Icarus, 188(1), 47–71. https://doi.org/10.1016/j.icarus.2006.11.016
Nixon, C. A., Achterberg, R. K., Romani, P. N., Allen, M., Zhang, X., Teanby, N. A., et al. (2010). Abundances of Jupiter's trace hydrocarbons from Voyager and Cassini. Planetary and Space Science, 58(13), 1667–1680. https://doi.org/10.1016/j.pss.2010.05.008
Plass, G. N., Kattawar, G. W., & Catchings, F. E. (1973). Matrix operator theory of radiative transfer. 1: Rayleigh scattering. Applied Optics, 12(2), 314–329. https://doi.org/10.1364/ao.12.000314
Ridgway, S. T. (1974). Jupiter: Identification of ethane and acetylene. The Astrophysical Journal, 187, L41–L43. https://doi.org/10.1086/181388
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice. World Scientific.
Sada, P. V., Bjoraker, G. L., Jennings, D. E., McCabe, G. H., & Romani, P. N. (1998). Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter. Icarus, 136(2), 192–201. https://doi.org/10.1006/icar.1998.6021
Sinclair, J. A., Moses, J. I., Hue, V., Greathouse, T. K., Orton, G. S., Fletcher, L. N., & Irwin, P. G. J. (2019). Jupiter's auroral-related stratospheric heating and chemistry III: Abundances of C2H4, CH3C2H, C4H2, and C6H6 from Voyager-IRIS and Cassini-CIRS. Icarus, 328, 176–193. https://doi.org/10.1016/j.icarus.2019.03.012
Sinclair, J. A., Orton, G. S., Fletcher, L. N., Roman, M., de Pater, I., Encrenaz, T., et al. (2020). Spatial structure in Neptune's 7.90 µm stratospheric CH4 emission, as measured by VLT-VISIR. Icarus, 345, 113748. https://doi.org/10.1016/j.icarus.2020.113748
Sinclair, J. A., Orton, G. S., Greathouse, T. K., Fletcher, L. N., Moses, J. I., Hue, V., & Irwin, P. G. J. (2017). Jupiter's auroral-related stratospheric heating and chemistry I: Analysis of Voyager-IRIS and Cassini-CIRS spectra. Icarus, 292, 182–207. https://doi.org/10.1016/j.icarus.2016.12.033
Sinclair, J. A., Orton, G. S., Greathouse, T. K., Fletcher, L. N., Moses, J. I., Hue, V., & Irwin, P. G. J. (2018). Jupiter's auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014. Icarus, 300, 305–326. https://doi.org/10.1016/j.icarus.2017.09.016
Trantham, B. (2014). JNO-J-UVS-3-RDR-V1.0. NASA Planetary Data System.
Wong, A.-S., Lee, A. Y. T., Yung, Y. L., & Ajello, J. M. (2000). Jupiter: Aerosol chemistry in the polar atmosphere. The Astrophysical Journal Letters, 534(2), L215–L217. https://doi.org/10.1086/312675
Wong, A.-S., Yung, Y. L., & Friedson, A. J. (2003). Benzene and haze formation in the polar atmosphere of Jupiter. Geophysical Research Letters, 30(8). https://doi.org/10.1029/2002gl016661
Zhang, X., Nixon, C. A., Shia, R. L., West, R. A., Irwin, P. G. J., Yelle, R. V., et al. (2013). Radiative forcing of the stratosphere of Jupiter, part I: Atmospheric cooling rates from Voyager to Cassini. Planetary and Space Science, 88, 3–25. https://doi.org/10.1016/j.pss.2013.07.005
Zhang, X., West, R. A., Banfield, D., & Yung, Y. L. (2013). Stratospheric aerosols on Jupiter from Cassini observations. Icarus, 226(1), 159–171. https://doi.org/10.1016/j.icarus.2013.05.020
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.