[en] Jupiter hosts intense auroral activity associated with charged particles precipitating into the planet's atmosphere. The Galilean moons orbiting within the magnetosphere are swept by the magnetic field: the resulting perturbation travels along field lines as Alfven waves, which are able to accelerate electrons toward the planet, producing satellite-induced auroral emissions. These emissions due to the moons, known as footprints, can be detected in various wavelengths (UV, visible, IR) outside the main auroral emission as multiple bright spots followed by footprint tails. Since 2016 the Juno spacecraft orbiting Jupiter has surveyed the polar regions more than 30 times at close distances. Onboard the spacecraft, the Jovian InfraRed Auroral Mapper (JIRAM) is an imager and spectrometer with an L-band imaging filter suited to observe auroral features at unprecedented spatial resolution. JIRAM revealed a rich substructure in the footprint tails of Io, Europa, and Ganymede, which appear as a trail of quasi-regularly spaced bright sub-dots whose intensity fades away along the emission trail as the spatial separation from the footprint increases. The fine structure of the Europa and Ganymede footprint tails is reported in this work for the first time. We will also show that the typical distance between subsequent sub-dots is the same for all three moons at JIRAM resolution in both hemispheres. In addition, the sub-dots observed by JIRAM are static in a frame corotating with Jupiter. A feedback mechanism between the ionosphere and the magnetosphere is suggested as a potential candidate to explain the morphology of the footprint tails.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Moirano, Alessandro
Mura, Alessandro
Adriani, Alberto
Dols, Vincent
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Acuña, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfvén wave current system at Io: Voyager 1 observations. Journal of Geophysical Research, 86(A10), 8513–8521. https://doi.org/10.1029/JA086iA10p08513
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2014). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213(1–4), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Adriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M. L., et al. (2018). Clusters of cyclones encircling Jupiter's poles. Nature, 555(7695), 216–219. https://doi.org/10.1038/nature25491
Allegrini, F., Gladstone, G. R., Hue, V., Clark, G., Szalay, J. R., Kurth, W. S., et al. (2020). First report of electron measurements during a Europa footprint tail crossing by Juno. Geophysical Research Letters, 47(18), e2020GL089732. https://doi.org/10.1029/2020GL089732
Atkinson, G. (1970). Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere. Journal of Geophysical Research, 75(25), 4746–4755. https://doi.org/10.1029/JA075i025p04746
Bagenal, F. (1985). Plasma conditions inside Io's orbit: Voyager measurements. Journal of Geophysical Research, 90(A1), 311–324. https://doi.org/10.1029/JA090iA01p00311
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1–4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bagenal, F., & Dols, V. (2020). The space environment of Io and Europa. Journal of Geophysical Research: Space Physics, 125(5), e2019JA027485. https://doi.org/10.1029/2019JA027485
Bagenal, F., Wilson, R. J., Siler, S., Paterson, W. R., & Kurth, W. S. (2016). Survey of Galileo plasma observations in Jupiter's plasma sheet. Journal of Geophysical Research: Planets, 121(5), 871–894. https://doi.org/10.1002/2016JE005009
Belcher, J. W., Goertz, C. K., Sullivan, J. D., & Acuña, M. H. (1981). Plasma observations of the Alfvén wave generated by Io. Journal of Geophysical Research, 86(A10), 8508–8512. https://doi.org/10.1029/JA086iA10p08508
Bhattacharyya, D., Clarke, J. T., Montgomery, J., Bonfond, B., Gérard, J., & Grodent, D. (2018). Evidence for auroral emissions from Callisto's Footprint in HST UV Images. Journal of Geophysical Research: Space Physics, 123(1), 364–373. https://doi.org/10.1002/2017JA024791
Bonfond, B. (2010). The 3-D extent of the Io UV footprint on Jupiter. Journal of Geophysical Research, 115(A9). https://doi.org/10.1029/2010JA015475
Bonfond, B. (2012). When moons create aurora: The satellite footprints on giant planets. In A. Keiling, E. Donovan, F. Bagenal, & T. Karlsson, T. (Eds.), Auroral phenomenology and magnetospheric processes: Earth and other planets (pp. 133–140). American Geophysical Union (AGU). https://doi.org/10.1029/2011GM001169
Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J. C., & Radioti, A. (2017). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. Icarus, 292, 208–217. https://doi.org/10.1016/j.icarus.2017.01.009
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Dols, V., Delamere, P. A., & Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. Journal of Geophysical Research, 114, A07224. https://doi.org/10.1029/2009JA014312
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35(5), L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Hess, S., Bagenal, F., Gérard, J.-C., Grodent, D., Radioti, A., et al. (2013). The multiple spots of the Ganymede auroral footprint. Geophysical Research Letters, 40(19), 4977–4981. https://doi.org/10.1002/grl.50989
Brown, R. A. (1981). The Jupiter hot plasma torus—Observed electron temperature and energy flows. Acta Pathologica Japonica, 244, 1072. https://doi.org/10.1086/158777
Brown, R. A. (1983). Observed departure of the Io plasma torus from rigid corotation with Jupiter. The Astrophysical Journal, 268, L47. https://doi.org/10.1086/184027
Caldwell, J., Turgeon, B., & Hua, X.-M. (1992). Hubble space telescope imaging of the North Polar Aurora on Jupiter. Science, 257(5076), 1512–1515. https://doi.org/10.1126/science.257.5076.1512
Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Courier Corporation.
Chen, Q., Otto, A., & Lee, L. C. (1997). Tearing instability, Kelvin-Helmholtz instability, and magnetic reconnection. Journal of Geophysical Research, 102(A1), 151–161. https://doi.org/10.1029/96JA03144
Clarke, J. T., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gérard, J.-C., et al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415(6875), 997–1000. https://doi.org/10.1038/415997a
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J. E. P., Stapelfeldt, K., et al. (1996). Far-ultraviolet imaging of Jupiter's aurora and the Io “Footprint”. Science, 274(5286), 404–409. https://doi.org/10.1126/science.274.5286.404
Clarke, J. T., Grodent, D., Cowley, S. W. H., Bunce, E. J., Zarka, P., Connerney, J. E. P., & Satoh, T. (2004). Jupiter's Aurora. In Jupiter: The Planet, Satellites and magnetosphere (Vol. 1, pp. 639–670). Cambridge University Press.
Clark, R. N., & Mc Cord, T. B. (1980). The Galilean satellites: New near-infrared spectral reflectance measurements (0.65–2.5 m) and a 0.325–5 m summary. Icarus, 41(3), 323–339. https://doi.org/10.1016/0019-1035(80)90217-1
Coffin, D., Delamere, P., & Damiano, P. (2020). Implications for magnetosphere-ionosphere coupling from Jupiter's system IV Quasi-Period. Journal of Geophysical Research: Space Physics, 125(5), e2019JA027347. https://doi.org/10.1029/2019JA027347
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the foot of the Io Flux tube in Jupiter's atmosphere. Science, 262(5136), 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45(6), 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., & Satoh, T. (2000). The H+3 ion: A remote diagnostic of the Jovian magnetosphere. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 358(1774), 2471–2483. https://doi.org/10.1098/rsta.2000.0661
Crary, F. J., & Bagenal, F. (1997). Coupling the plasma interaction at Io to Jupiter. Geophysical Research Letters, 24(17), 2135–2138. https://doi.org/10.1029/97GL02248
Damiano, P. A., Delamere, P. A., Stauffer, B., Ng, C.-S., & Johnson, J. R. (2019). Kinetic simulations of electron acceleration by dispersive scale Alfvén waves in Jupiter's magnetosphere. Geophysical Research Letters, 46(6), 3043–3051. https://doi.org/10.1029/2018GL081219
Delamere, P. A., & Bagenal, F. (2003). Modeling variability of plasma conditions in the Io torus. Journal of Geophysical Research, 108(A7), 1276. https://doi.org/10.1029/2002JA009706
Dols, V., Gérard, J. C., Paresce, F., Prangé, R., & Vidal-Madjar, A. (1992). Ultraviolet imaging of the Jovian aurora with the Hubble Space Telescope. Geophysical Research Letters, 19(18), 1803–1806. https://doi.org/10.1029/92GL02104
Dougherty, L. P., Bodisch, K. M., & Bagenal, F. (2017). Survey of Voyager plasma science ions at Jupiter: 2. Heavy ions. Journal of Geophysical Research: Space Physics, 122(8), 8257–8276. https://doi.org/10.1002/2017JA024053
Drossart, P., Maillard, J., Caldwell, J., Kim, S., Watson, J., Majewski, W., et al. (1989). Detection of H3+ on Jupiter. Nature, 340, 539–541. https://doi.org/10.1038/340539a0
Durrance, S. T., Feldman, P. D., & Weaver, H. A. (1983). Rocket detection of ultraviolet emission from neutral oxygen and sulfur in the Io Torus. Acta Pathologica Japonica, 267, L125. https://doi.org/10.1086/184016
Ergun, R. E., Ray, L., Delamere, P. A., Bagenal, F., Dols, V., & Su, Y.-J. (2009). Generation of parallel electric fields in the Jupiter-Io torus wake region. Journal of Geophysical Research, 114(A5), A05201. https://doi.org/10.1029/2008JA013968
Gérard, J.-C., Mura, A., Bonfond, B., Gladstone, G., Adriani, A., Hue, V., et al. (2018). Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 312, 145–156. https://doi.org/10.1016/j.icarus.2018.04.020
Gérard, J.-C., Saglam, A., Grodent, D., & Clarke, J. T. (2006). Morphology of the ultraviolet Io footprint emission and its control by Io's location. Journal of Geophysical Research, 111(A4), A04202. https://doi.org/10.1029/2005JA011327
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, A. F., et al. (2019). Alfvénic fluctuations associated with Jupiter's auroral emissions. Geophysical Research Letters, 46(13), 7157–7165. https://doi.org/10.1029/2019GL082951
Grenier, E. (2005). Chapter 4—Boundary layers. In S. Friedlander, & D. Serre (Eds.), Handbook of Mathematical fluid dynamics (Vol. 3, pp. 245–309). North-Holland. https://doi.org/10.1016/S1874-5792(05)80007-2
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Gérard, J.-C., Gustin, J., Mauk, B. H., Connerney, J. E. P., & Clarke, J. T. (2006). Europa's FUV auroral tail on Jupiter. Geophysical Research Letters, 33(6), L06201. https://doi.org/10.1029/2005GL025487
Hasegawa, H., Fujimoto, M., Phan, T.-D., Rème, H., Balogh, A., Dunlop, M. W., et al. (2004). Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature, 430(7001), 755–758. https://doi.org/10.1038/nature02799
Hess, S. L. G., Delamere, P., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115(A6). https://doi.org/10.1029/2009JA014928
Hill, T. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554. https://doi.org/10.1029/JA084iA11p06554
Hinton, P. C., Bagenal, F., & Bonfond, B. (2019). Alfvén wave propagation in the Io plasma Torus. Geophysical Research Letters, 46(3), 1242–1249. https://doi.org/10.1029/2018GL081472
Hiraki, Y. (2015). Auroral vortex street formed by the magnetosphere-ionosphere coupling instability. Annales Geophysicae, 33(2), 217–224. https://doi.org/10.5194/angeo-33-217-2015
Hiraki, Y., Tsuchiya, F., & Katoh, Y. (2012). Io torus plasma transport under interchange instability and flow shears. Planetary and Space Science, 62(1), 41–47. https://doi.org/10.1016/j.pss.2011.11.014
Ingersoll, A. P., Vasavada, A. R., Little, B., Anger, C. D., Bolton, S. J., Alexander, C., et al. (1998). Imaging Jupiter's aurora at visible wavelengths. Icarus, 135(1), 251–264. https://doi.org/10.1006/icar.1998.5971
Ivanovski, S., Kartalev, M., Dobreva, P., Vatkova, G., & Chernogorova, T. (2011). Coupled Kelvin-Helmoltz and tearing mode instabilities in the magnetopause layer. JTAM, 41(3), 31–42.
Jacobsen, S., Neubauer, F. M., Saur, J., & Schilling, N. (2007). Io's nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophysical Research Letters, 34(10), L10202. https://doi.org/10.1029/2006GL029187
Jia, N., & Streltsov, A. V. (2014). Ionospheric feedback instability and active discrete auroral forms. Journal of Geophysical Research: Space Physics, 119(3), 2243–2254. https://doi.org/10.1002/2013JA019217
Jones, S. T., & Su, Y.-J. (2008). Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube. Journal of Geophysical Research, 113(A12). https://doi.org/10.1029/2008JA013512
Livengood, T. A., Moos, H. W., Ballester, G. E., & Prangé, R. M. (1992). Jovian ultraviolet auroral activity, 1981–1991. Icarus, 97(1), 26–45. https://doi.org/10.1016/0019-1035(92)90055-C
Lynch, K. A., Hampton, D. L., Zettergren, M., Bekkeng, T. A., Conde, M., Fernandes, P. A., et al. (2015). MICA sounding rocket observations of conductivity-gradient-generated auroral ionospheric responses: Small-scale structure with large-scale drivers. Journal of Geophysical Research: Space Physics, 120(11), 9661–9682. https://doi.org/10.1002/2014JA020860
Lysak, R. L. (1991). Feedback instability of the ionospheric resonant cavity. Journal of Geophysical Research, 96(A2), 1553–1568. https://doi.org/10.1029/90JA02154
Lysak, R. L., & Song, Y. (2002). Energetics of the ionospheric feedback interaction. Journal of Geophysical Research, 107(A8). https://doi.org/10.1029/2001JA000308
Lysak, R. L., & Song, Y. (2003). Kinetic theory of the Alfvén wave acceleration of auroral electrons. Journal of Geophysical Research, 108(A4), 8005. https://doi.org/10.1029/2002JA009406
Mauk, B. H., Williams, D. J., & McEntire, R. W. (1997). Energy-time dispersed charged particle signatures of dynamic injections in Jupiter's inner magnetosphere. Geophysical Research Letters, 24(23), 2949–2952. https://doi.org/10.1029/97GL03026
McElroy, M. B., & Yung, Y. L. (1975). The atmosphere and ionosphere of Io. Acta Pathologica Japonica, 196, 227. https://doi.org/10.1086/153408
Miller, S., Tennyson, J., Geballe, T. R., & Stallard, T. (2020). Thirty years of H3+ astronomy. Reviews of Modern Physics, 92(3), 035003. https://doi.org/10.1103/RevModPhys.92.035003
Miura, A. (1997). Compressible magnetohydrodynamic Kelvin-Helmholtz instability with vortex pairing in the two-dimensional transverse configuration. Physics of Plasmas, 4(8), 2871–2885. https://doi.org/10.1063/1.872419
Miura, A., & Pritchett, P. L. (1982). Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. Journal of Geophysical Research, 87(A9), 7431–7444. https://doi.org/10.1029/JA087iA09p07431
Miura, A., & Sato, T. (1980). Numerical simulation of global formation of auroral arcs. Journal of Geophysical Research, 85(A1), 73–91. https://doi.org/10.1029/JA085iA01p00073
Mura, A., Adriani, A., Altieri, F., Connerney, J. E. P., Bolton, S. J., Moriconi, M. L., et al. (2017). Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints: Jovian aurora IR observations from Juno. Geophysical Research Letters, 44(11), 5308–5316. https://doi.org/10.1002/2017GL072954
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361(6404), 774–777. https://doi.org/10.1126/science.aat1450
Neubauer, F. (1980). Nonlinear standing Alfvén wave current system at Io: Theory. Journal of Geophysical Research, 85(A3), 1171–1178. https://doi.org/10.1029/JA085iA03p01171
Nichols, J. D., & Cowley, S. W. H. (2004). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Annales Geophysicae, 22(5), 1799–1827. https://doi.org/10.5194/angeo-22-1799-2004
Nichols, J. D., & Cowley, S. W. H. (2005). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages. Annals of Geophysics, 23(3), 799–808. https://doi.org/10.5194/angeo-23-799-2005
Oka, T. (1980). Observation of the infrared spectrum of H3+. Physical Review Letters, 45(7), 531–534. https://doi.org/10.1103/PhysRevLett.45.531
Paganini, L., Villanueva, G. L., Roth, L., Mandell, A. M., Hurford, T. A., Retherford, K. D., & Mumma, M. J. (2020). A measurement of water vapour amid a largely quiescent environment on Europa. Nature Astronomy, 4(3), 266–272. https://doi.org/10.1038/s41550-019-0933-6
Paranicas, C., Mauk, B., Haggerty, D., Clark, G., Kollmann, P., Rymer, A., et al. (2019). Io's effect on energetic charged particles as seen in Juno Data. Geophysical Research Letters, 46(23), 13615–13620. https://doi.org/10.1029/2019GL085393
Pokhotelov, D. (2003). Effects of the active auroral ionosphere on magnetosphere—ionosphere coupling (Thesis (Ph.D.)). https://doi.org/10.1349/ddlp.3332
Pokhotelov, O. A., Khruschev, V., Parrot, M., Senchenkov, S., & Pavlenko, V. P. (2001). Ionospheric Alfvén resonator revisited: Feedback instability. Journal of Geophysical Research, 106(A11), 25813–25824. https://doi.org/10.1029/2000JA000450
Pontius, D. H., & Hill, T. W. (1982). Departure from corotation of the Io plasma torus: Local plasma production. Geophysical Research Letters, 9(12), 1321–1324. https://doi.org/10.1029/GL009i012p01321
Prangé, R., Rego, D., Southwood, D., Zarka, P., Miller, S., & Ip, W. (1996). Rapid energy dissipation and variability of the lo-Jupiter electrodynamic circuit. Nature, 379(6563), 323–325. https://doi.org/10.1038/379323a0
Rankin, R., Kabin, K., Lu, J. Y., Mann, I. R., Marchand, R., Rae, I. J., & Donovan, E. F. (2005). Magnetospheric field-line resonances: Ground-based observations and modeling. Journal of Geophysical Research, 110(A10), A10S09. https://doi.org/10.1029/2004JA010919
Ray, L. C., Ergun, R. E., Delamere, P. A., & Bagenal, F. (2010). Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport. Journal of Geophysical Research, 115(A9). https://doi.org/10.1029/2010JA015423
Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., & Nimmo, F. (2014). Transient water vapor at Europa's South Pole. Science, 343(6167), 171–174. https://doi.org/10.1126/science.1247051
Sato, T. (1978). A theory of quiet auroral arcs. Journal of Geophysical Research, 83(A3), 1042. https://doi.org/10.1029/JA083iA03p01042
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy & Astrophysics, 552, A119. https://doi.org/10.1051/0004-6361/201118179
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., et al. (2018). Wave-particle interaction of Alfvén waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123(11), 9560–9573. https://doi.org/10.1029/2018JA025948
Saur, J., Strobel, D. F., & Neubauer, F. M. (1998). Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere. Journal of Geophysical Research, 103(E9), 19947–19962. https://doi.org/10.1029/97JE03556
Skinner, T. E., Durrance, S. T., Feldman, P. D., & Moos, H. W. (1984). IUE observations of longitudinal and temporal variations in the Jovian auroral emission. The Astrophysical Journal, 278, 441–448. https://doi.org/10.1086/161809
Streltsov, A. V., & Mishin, E. V. (2018). On the existence of ionospheric feedback instability in the Earth's magnetosphere-ionosphere system. Journal of Geophysical Research: Space Physics, 123(11), 8951–8957. https://doi.org/10.1029/2018JA025942
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., et al. (2020). Wave-particle interactions associated with Io's auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes. Geophysical Research Letters, 47. https://doi.org/10.1029/2020GL088432
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020a). Alfvénic accelerationsustains Ganymede's footprint tail aurora. Geophysical Research Letters, 47(3), e2019GL086527. https://doi.org/10.1029/2019GL086527
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020b). A new framework to explain changes in Io's footprint tail electron fluxes. Geophysical Research Letters, 47(18), e2020GL089267. https://doi.org/10.1029/2020GL089267
Szalay, J. R., Bagenal, F., Allegrini, F., Bonfond, B., Clark, G., Connerney, J. E. P., et al. (2020). Proton acceleration by Io's Alfvénic Interaction. Journal of Geophysical Research: Space Physics, 125(1), e2019JA027314. https://doi.org/10.1029/2019JA027314
Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io neutral clouds and plasma torus. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The planet, satellites and magnetosphere (Vol. 1, pp. 561–591). Cambridge University Press.
Thomas, N., Lichtenberg, G., & Scotto, M. (2001). High-resolution spectroscopy of the Io plasma torus during the Galileo mission. Journal of Geophysical Research, 106(A11), 26277–26291. https://doi.org/10.1029/2000JA002504
Trafton, L., Carr, J., Lester, D., & Harvey, P. (1989). Jupiter's Aurora: Detection of quadrupole h2 emission (p. 494). NASA Special Publication.
Tulegenov, B., & Streltsov, A. V. (2017). Ionospheric Alfvén resonator and aurora: Modeling of MICA observations. Journal of Geophysical Research: Space Physics, 122(7), 7530–7540. https://doi.org/10.1002/2017JA024181
Vasavada, A. R., Bouchez, A. H., Ingersoll, A. P., Little, B., & Anger, C. D. (1999). Jupiter's visible aurora and Io footprint. Journal of Geophysical Research, 104(E11), 27133–27142. https://doi.org/10.1029/1999JE001055
von Kármán, T. (1911). Ueber den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 509–517.
Watanabe, H., Kita, H., Tao, C., Kagitani, M., Sakanoi, T., & Kasaba, Y. (2018). Pulsation characteristics of Jovian infrared Northern aurora observed by the Subaru IRCS with adaptive optics. Geophysical Research Letters, 45(21), 11,547–11,554. https://doi.org/10.1029/2018GL079411
Watanabe, T.-H. (2010). Feedback instability in the magnetosphere-ionosphere coupling system: Revisited. Physics of Plasmas, 17(2), 022904. https://doi.org/10.1063/1.3304237
Wu, W., Peng, S., Ma, T., Ren, H., Zhang, J., Zhang, T., et al. (2019). Status of high current H2+ and H3+ ion sources. Review of Scientific Instruments, 90(10), 101501. https://doi.org/10.1063/1.5109240