Cold water tracing; Heat tracer; density-viscosity dependent; transport modeling; temperature; weathered/fractured granite
Abstract :
[en] Heat as a tracer in fractured porous aquifers is more sensitive to fracture-matrix processes than a solute tracer. Temperature
evolution as a function of time can be used to differentiate fracture and matrix characteristics. Experimental hot (50 ◦C) and cold
(10 ◦C) water injections were performed in a weathered and fractured granite aquifer where the natural background temperature
is 30 ◦C. The tailing of the hot and cold breakthrough curves, observed under different hydraulic conditions, was characterized
in a log–log plot of time vs. normalized temperature difference, also converted to a residence time distribution (normalized).
Dimensionless tail slopes close to 1.5 were observed for hot and cold breakthrough curves, compared to solute tracer tests showing
slopes between 2 and 3. This stronger thermal diffusive behavior is explained by heat conduction. Using a process-based numerical
model, the impact of heat conduction toward and from the porous rock matrix on groundwater heat transport was explored. Fracture
aperture was adjusted depending on the actual hydraulic conditions. Water density and viscosity were considered temperature
dependent. The model simulated the increase or reduction of the energy level in the fracture-matrix system and satisfactorily
reproduced breakthrough curves tail slopes. This study shows the feasibility and utility of cold water tracer tests in hot fractured
aquifers to boost and characterize the thermal matrix diffusion from the matrix toward the flowing groundwater in the fractures.
This can be used as complementary information to solute tracer tests that are largely influenced by strong advection in the fractures
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Hoffmann, Richard ; Université de Liège - ULiège > Form. doct. sc. ingé. & techn. (archi., gén. civ. - paysage)
Maréchal, Jean-Christophe; BRGM > University of Montpellier, France > G-eau, UMR 183, INRAE, CIRAD, IRD, AgroParisTech, Supagro, BRGM
Selles, Adrien; BRGM > University of Montpellier, France > G-eau, UMR 183, INRAE, CIRAD, IRD, AgroParisTech, Supagro, BRGM, Indo-French Center for Groundwater Research, Hyderabad, India
Dassargues, Alain ; Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Goderniaux, Pascal; University of Mons > Polytech Mons > Geology and Applied Geology
Language :
English
Title :
Heat Tracing in a Fractured Aquifer with Injection of Hot and Cold Water
Anderson, M.P. 2005. Heat as a ground water tracer. Groundwater 43, no. 6: 951–968. https://doi.org/10.1111/j.1745-6584.2005.00052.x
Ascencio, F., F. Samaniego, and J. Rivera. 2014. A heat loss analytical model for the thermal front displacement in naturally fractured reservoirs. Geothermics 50: 112–121. https://doi.org/10.1016/j.geothermics.2013.09.002
Barker, J.A. 2010. Modelling doublets and double porosity. Quarterly Journal of Engineering Geology and Hydrogeology 43, no. 3: 259–268. https://doi.org/10.1144/1470-9236/08-095
Bear, J., C.-F. Tsang, and G. de Marsily. 1993. Flow and Contaminant Transport in Fractured Rock, 1st ed. San Diego, California: Academic Press.
Bear, J., and A. Verruijt. 1987. Modeling Groundwater Flow and Pollution, 1st ed. Dordrecht, The Netherlands: Springer Netherlands.
Benz, S.A., P. Bayer, and P. Blum. 2017. Global patterns of shallow groundwater temperatures. Environmental Research Letters 12, no. 3: 34005. https://doi.org/10.1088/1748-9326/aa5fb0
Berkowitz, B., J. Bear, and C. Braester. 1988. Continuum models for contaminant transport in fractured porous formations. Water Resources Research 24, no. 8: 1225–1236. https://doi.org/10.1029/WR024i008p01225
Bodin, J., F. Delay, and G. de Marsily. 2003. Solute transport in a single fracture with negligible matrix permeability: 1. Fundamental mechanisms. Hydrogeology Journal 11, no. 4: 418–433. https://doi.org/10.1007/s10040-003-0268-2
Boisson, A., N. Guihéneuf, J. Perrin, O. Bour, B. Dewandel, A. Dausse, M. Viossanges, S. Ahmed, and J.-C. Maréchal. 2015. Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: Insights from a study on an instrumented site. Hydrogeology Journal 23, no. 4: 757–773. https://doi.org/10.1007/s10040-014-1226-x
Bridger, D.W., and D.M. Allen. 2010. Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES). Canadian Geotechnical Journal 47, no. 1: 96–115. https://doi.org/10.1139/T09-078
Carrera, J., X. Sánchez-Vila, I. Benet, A. Medina, G. Galarza, and J. Guimerà. 1998. On matrix diffusion: Formulations, solution methods and qualitative effects. Hydrogeology Journal 6, no. 1: 178–190. https://doi.org/10.1007/s100400050143
Dassargues, A. 2018. Hydrogeology: Groundwater Science and Engineering, 1st ed. Boca Raton, Florida: CRC Press.
de la Bernardie, J., O. Bour, N. Guihéneuf, E. Chatton, L. Longuevergne, and T. Le Borgne. 2019. Dipole and convergent single-well thermal tracer tests for characterizing the effect of flow configuration on thermal recovery. Geosciences 9, no. 10: 440. https://doi.org/10.3390/geosciences9100440
de la Bernardie, J., O. Bour, T. Le Borgne, N. Guihéneuf, E. Chatton, T. Labasque, H. Le Lay, and M.-F. Gerard. 2018. Thermal attenuation and lag time in fractured rock: Theory and field measurements from joint heat and solute tracer tests. Water Resources Research 54, no. 12: 10053–10075. https://doi.org/10.1029/2018WR023199
de Schepper, G., C. Paulus, P.-Y. Bolly, T. Hermans, N. Lesparre, and T. Robert. 2019. Assessment of short-term aquifer thermal energy storage for demand-side management perspectives: Experimental and numerical developments. Applied Energy 242: 534–546. https://doi.org/10.1016/j.apenergy.2019.03.103
Dewandel, B., S. Lanini, P. Lachassagne, and J.-C. Maréchal. 2018. A generic analytical solution for modelling pumping tests in wells intersecting fractures. Journal of Hydrology 559: 89–99. https://doi.org/10.1016/j.jhydrol.2018.02.013
Dewandel, B., P. Lachassagne, R. Wyns, J.-C. Maréchal, and N.S. Krishnamurthy. 2006. A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology 330, no. 1–2: 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026
Domenico, P.A., and F.W. Schwartz. 1998. Physical and Chemical Hydrogeology, 2nd ed. New York: John Wiley & Sons Inc.
Feehley, C.E., C. Zheng, and F.J. Molz. 2000. A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: Application to the macrodispersion experiment (MADE) site. Water Resources Research 36, no. 9: 2501–2515. https://doi.org/10.1029/2000WR900148
Geiger, S., and S. Emmanuel. 2010. Non-Fourier thermal transport in fractured geological media. Water Resources Research 46, no. 7: W07504. https://doi.org/10.1029/2009WR008671
Graf, T., and C.T. Simmons. 2009. Variable-density groundwater flow and solute transport in fractured rock: Applicability of the Tang et al. [1981] analytical solution. Water Resources Research 45, no. 2: W02425. https://doi.org/10.1029/2008WR007278
Graf, T., and R. Therrien. 2007. Variable-density groundwater flow and solute transport in irregular 2D fracture networks. Advances in Water Resources 30, no. 3: 455–468. https://doi.org/10.1016/j.advwatres.2006.05.003
Graf, T., and R. Therrien. 2005. Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures. Advances in Water Resources 28, no. 12: 1351–1367. https://doi.org/10.1016/j.advwatres.2005.04.011
Guihéneuf, N., O. Bour, A. Boisson, T. Le Borgne, M.W. Becker, B. Nigon, M. Wajiduddin, S. Ahmed, and J.-C. Maréchal. 2017. Insights about transport mechanisms and fracture flow channeling from multi-scale observations of tracer dispersion in shallow fractured crystalline rock. Journal of Contaminant Hydrology 206: 18–33. https://doi.org/10.1016/j.jconhyd.2017.09.003
Guihéneuf, N., A. Boisson, O. Bour, B. Dewandel, J. Perrin, A. Dausse, M. Viossanges, S. Chandra, S. Ahmed, and J.-C. Maréchal. 2014. Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity. Journal of Hydrology 511: 320–334. https://doi.org/10.1016/j.jhydrol.2014.01.061
Hermans T., Nguyen F., Klepikova M. V., Dassargues A., Caers J. 2018. Uncertainty Quantification of Medium-Term Heat Storage From Short-Term Geophysical Experiments Using Bayesian Evidential Learning. Water Resources Research, 54, no. 4: 2931–2948. http://dx.doi.org/10.1002/2017wr022135http://doi.org/10.1002/2017wr022135
Hoffmann, R., P. Goderniaux, P. Jamin, P. Orban, S. Brouyère, and A. Dassargues. 2021. in review: Differential influence of Cretaceous double porosity on solute and heat transport. In The hydrogeology of the chalk in Northern Europe, eds. R. Farrell, and P.R. Howlett. London, UK: Geological Society of London.
Hoffmann, R., P. Goderniaux, P. Jamin, E. Chatton, J. de la Bernardie, T. Labasque, T. Le Borgne, and A. Dassargues. 2020. Continuous dissolved gas tracing of fracture-matrix exchanges. Geophysical Research Letters 47, no. 17: e2020GL088944. https://doi.org/10.1029/2020GL088944
Hoffmann, R., A. Dassargues, P. Goderniaux, and T. Hermans. 2019. Heterogeneity and prior uncertainty investigation using a joint heat and solute tracer experiment in alluvial sediments. In Parameter Estimation and Uncertainty Quantification in Water Resources Modeling, Vol. 7, eds. P. Renard, F. Delay, D.M. Tartakovsky, and V.V. Vesselinov, 40–54. Lausanne, Switzerland: Frontiers Media SA. https://doi.org/10.3389/feart.2019.00108
Hyman, J.D., H. Rajaram, S. Srinivasan, N. Makedonska, S. Karra, H. Viswanathan, and G. Srinivasan. 2019. Matrix diffusion in fractured media: New insights into power law scaling of breakthrough curves. Geophysical Research Letters 46, no. 23: 13785–13795. https://doi.org/10.1029/2019GL085454
Irvine, D.J., B.L. Kurylyk, I. Cartwright, M. Bonham, V.E.A. Post, E.W. Banks, and C.T. Simmons. 2017. Groundwater flow estimation using temperature-depth profiles in a complex environment and a changing climate. The Science of the Total Environment 574: 272–281. https://doi.org/10.1016/j.scitotenv.2016.08.212
Irvine, D.J., C.T. Simmons, A.D. Werner, and T. Graf. 2015. Heat and solute tracers: How do they compare in heterogeneous aquifers? Groundwater 53, no. S1: 10–20. https://doi.org/10.1111/gwat.12146
Kang, P.K., T. Le Borgne, M. Dentz, O. Bour, and R. Juanes. 2015. Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model. Water Resources Research 51, no. 2: 940–959. https://doi.org/10.1002/2014WR015799
Klepikova, M.V., T. Le Borgne, O. Bour, M. Dentz, R. Hochreutener, and N. Lavenant. 2016a. Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push-pull tracer tests. Water Resources Research 52, no. 7: 5442–5457. https://doi.org/10.1002/2016WR018789
Klepikova, M.V., S. Wildemeersch, T. Hermans, P. Jamin, P. Orban, F. Nguyen, S. Brouyère, and A. Dassargues. 2016b. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling. Journal of Hydrology 540: 812–823. https://doi.org/10.1016/j.jhydrol.2016.06.066
Kurylyk, B.L., and D.J. Irvine. 2019. Heat: An overlooked tool in the practicing hydrogeologist's toolbox. Groundwater 57, no. 4: 517–524. https://doi.org/10.1111/gwat.12910
Lima, M.G., D. Vogler, L. Querci, C. Madonna, B. Hattendorf, M.O. Saar, and X.-Z. Kong. 2019. Thermally driven fracture aperture variation in naturally fractured granites. Geothermal Energy 7, no. 23: 1–28. https://doi.org/10.1186/s40517-019-0140-9
Luo, J., Y. Qi, Q. Zhao, L. Tan, W. Xiang, and J. Rohn. 2018. Investigation of flow and heat transfer characteristics in fractured granite. Energies 11, no. 5: 1228. https://doi.org/10.3390/en11051228
Luo, J., Y. Zhu, Q. Guo, L. Tan, Y. Zhuang, M. Liu, C. Zhang, W. Xiang, and J. Rohn. 2017. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite. Scientific Reports 7: 39882. https://doi.org/10.1038/srep39882
Ma, Y., Y. Zhang, Z. Yu, Y. Huang, and C. Zhang. 2018. Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction. International Journal of Heat and Mass Transfer 119: 139–147. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.102
Ma, R., and C. Zheng. 2010. Effects of density and viscosity in modeling heat as a groundwater tracer. Groundwater 48, no. 3: 380–389. https://doi.org/10.1111/j.1745-6584.2009.00660.x
Maloszewski, P., and A. Zuber. 1993. Tracer experiments in fractured rocks: Matrix diffusion and the validity of models. Water Resources Research 29, no. 8: 2723–2735. https://doi.org/10.1029/93WR00608
Maréchal, J.-C., A. Selles, B. Dewandel, A. Boisson, J. Perrin, and S. Ahmed. 2018. An observatory of groundwater in crystalline rock aquifers exposed to a changing environment: Hyderabad, India. Vadose Zone Journal 17, no. 1: 180076. https://doi.org/10.2136/vzj2018.04.0076
Meigs, L.C., and R.L. Beauheim. 2001. Tracer tests in a fractured dolomite: 1. Experimental design and observed tracer recoveries. Water Resources Research 37, no. 5: 1113–1128. https://doi.org/10.1029/2000WR900335
Molson, J.W., E.O. Frind, and C.D. Palmer. 1992. Thermal energy storage in an unconfined aquifer: 2. Model development, validation, and application. Water Resources Research 28, no. 10: 2857–2867. https://doi.org/10.1029/92WR01472
Neretnieks, I. 1983. A note on fracture flow dispersion mechanisms in the ground. Water Resources Research 19, no. 2: 364–370. https://doi.org/10.1029/WR019i002p00364
Neretnieks, I., T. Eriksen, and P. Tähtinen. 1982. Tracer movement in a single fissure in granitic rock: Some experimental results and their interpretation. Water Resources Research 18, no. 4: 849–858. https://doi.org/10.1029/WR018i004p00849
Nicolas, M., O. Bour, A. Selles, B. Dewandel, V. Bailly-Comte, S. Chandra, S. Ahmed, and J.-C. Maréchal. 2019. Managed aquifer recharge in fractured crystalline rock aquifers: Impact of horizontal preferential flow on recharge dynamics. Journal of Hydrology 573: 717–732. https://doi.org/10.1016/j.jhydrol.2019.04.003
Palmer, C.D., D.W. Blowes, E.O. Frind, and J.W. Molson. 1992. Thermal energy storage in an unconfined aquifer: 1. Field injection experiment. Water Resources Research 28, no. 10: 2845–2856. https://doi.org/10.1029/92WR01471
Pehme, P., B.L. Parker, J.A. Cherry, and D. Blohm. 2014. Detailed measurement of the magnitude and orientation of thermal gradients in lined boreholes for characterizing groundwater flow in fractured rock. Journal of Hydrology 513: 101–114. https://doi.org/10.1016/j.jhydrol.2014.03.015
Quinn, P.M., J.A. Cherry, and B.L. Parker. 2020. Relationship between the critical Reynolds number and aperture for flow through single fractures: Evidence from published laboratory studies. Journal of Hydrology 581: 124384. https://doi.org/10.1016/j.jhydrol.2019.124384
Rau, G.C., M.S. Andersen, and R.I. Acworth. 2012. Experimental investigation of the thermal dispersivity term and its significance in the heat transport equation for flow in sediments. Water Resources Research 48, no. 3: W03511. https://doi.org/10.1029/2011WR011038
Read, T., O. Bour, V. Bense, T. Le Borgne, P. Goderniaux, M.V. Klepikova, R. Hochreutener, N. Lavenant, and V. Boschero. 2013. Characterizing groundwater flow and heat transport in fractured rock using fiber-optic distributed temperature sensing. Geophysical Research Letters 40, no. 10: 2055–2059. https://doi.org/10.1002/grl.50397
Reimus, P., G. Pohll, T. Mihevc, J. Chapman, M. Haga, B. Lyles, S. Kosinski, R. Niswonger, and P. Sanders. 2003. Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test. Water Resources Research 39, no. 12: 1356. https://doi.org/10.1029/2002WR001597
Sarris, T.S., M. Close, and P. Abraham. 2018. Using solute and heat tracers for aquifer characterization in a strongly heterogeneous alluvial aquifer. Journal of Hydrology 558: 55–71. https://doi.org/10.1016/j.jhydrol.2018.01.032
Selles, A., R. Hoffmann, W. Uddin, P. Goderniaux, A. Dassargues, J.-C. Maréchal, and V. Tiwari. 2019. Smart temperature tracing using heat and cold water in India—Video: YouTube video. https://www.youtube.com/watch?v=cx6s4cGj1sc
Singhal, B.B.S., and R.P. Gupta. 2010. Applied Hydrogeology of Fractured Rocks, 2nd ed. Dordrecht, The Netherlands: Springer Netherlands.
Therrien, R., R.G. McLaren, E.A. Sudicky, and S.M. Panday. 2010. HydroGeoSphere—A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport. Waterloo, Canada: Groundwater Simulation Group, University of Waterloo.
Tsang, C.-F., and I. Neretnieks. 1998. Flow channeling in heterogeneous fractured rocks. Reviews of Geophysics 36, no. 2: 275–298. https://doi.org/10.1029/97RG03319
Tsang, Y.W., C.-F. Tsang, I. Neretnieks, and L. Moreno. 1988. Flow and tracer transport in fractured media: A variable aperture channel model and its properties. Water Resources Research 24, no. 12: 2049–2060. https://doi.org/10.1029/WR024i012p02049
Wagner, V., T. Li, P. Bayer, C. Leven, P. Dietrich, and P. Blum. 2014. Thermal tracer testing in a sedimentary aquifer: Field experiment (Lauswiesen, Germany) and numerical simulation. Hydrogeology Journal 22, no. 1: 175–187. https://doi.org/10.1007/s10040-013-1059-z
Wildemeersch, S., P. Jamin, P. Orban, T. Hermans, M.V. Klepikova, F. Nguyen, S. Brouyère, and A. Dassargues. 2014. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers. Journal of Contaminant Hydrology 169: 90–99. https://doi.org/10.1016/j.jconhyd.2014.08.001
Zhao, Z., L. Jing, and I. Neretnieks. 2010. Evaluation of hydrodynamic dispersion parameters in fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering 2, no. 3: 243–254. https://doi.org/10.3724/SP.J.1235.2010.00243