Asteroseismology of evolved stars to constrain the internal transport of angular momentum. IV. Internal rotation of Kepler 56 from an MCMC analysis of the rotational splittings
[en] The observations of global stellar oscillations of post main-sequence stars by space-based photometry missions allowed to directly determine their internal rotation. These constraints have pointed towards the existence of angular momentum transport processes unaccounted for in theoretical models. Constraining the properties of their internal rotation thus appears as the golden path to determine the physical nature of these missing dynamical processes. We wish to determine the robustness of a new approach to study the internal rotation of post main-sequence stars, using parametric rotation profiles coupled to a global optimization technique. We test our methodology on Kepler 56, a red giant observed by the Kepler mission. First, we carry out an extensive modelling of the star using global and local minimizations techniques, and seismic inversions. Then, using our best model, we study in details its internal rotation profile, we adopted a Bayesian approach to constrain stellar parametric predetermined rotation profiles using a Monte Carlo Markov Chain analysis of the rotational splittings of mixed modes. Our Monte Carlo Markov Chain analysis of the rotational splittings allows to determine the core and envelope rotation of Kepler 56 as well as give hints about the location of the transition between the slowly rotating envelope and the fast rotating core. We are able to discard a rigid rotation profile in the radiative regions followed by a power-law in the convective zone and show that the data favours a transition located in the radiative region, as predicted by processes originating from a turbulent nature. Our analysis of Kepler 56 indicates that turbulent processes whose transport efficiency is reduced by chemical gradients are favoured, while large scale fossil magnetic fields are disfavoured as a solution to the missing angular momentum transport.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Fellay, Loïc ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Observatoire de Genève, Université de Genève, Sauverny, Switzerland
Buldgen, Gaël ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Eggenberger, P.
Khan, S.
Salmon, Sébastien ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Miglio, A.
Montalbán, J.
Language :
English
Title :
Asteroseismology of evolved stars to constrain the internal transport of angular momentum. IV. Internal rotation of Kepler 56 from an MCMC analysis of the rotational splittings
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adelberger, E. G., García, A., Robertson, R. G. H., et al. 2011, Rev. Mod. Phys., 83, 195
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Auvergne, M., Bodin, P., Boisnard, L., et al. 2009, A&A, 506, 411
Ball, W. H., & Gizon, L. 2014, A&A, 568, A123
Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature, 481, 55
Belkacem, K., Marques, J. P., Goupil, M. J., et al. 2015 a, A&A, 579, A30
Belkacem, K., Marques, J. P., Goupil, M. J., et al. 2015 b, A&A, 579, A31
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977
Buldgen, G. 2019, Bull. Soc. R. Sci. Liege, 88, 50
Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J., & Paxton, B. 2014, ApJ, 788, 93
Casagrande, L., & VandenBerg, D. A. 2014, MNRAS, 444, 392
Casagrande, L., & VandenBerg, D. A. 2018, MNRAS, 475, 5023
Ceillier, T., Eggenberger, P., García, R. A., & Mathis, S. 2013, A&A, 555, A54
Cox, J. P., & Giuli, R. T. 1968, Principles of Stellar Structure (New York: Gordon and Breach)
Deheuvels, S., & Michel, E. 2011, A&A, 535, A91
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19
Deheuvels, S., Doǧan, G., Goupil, M. J., et al. 2014, A&A, 564, A27
Deheuvels, S., Ballot, J., Beck, P. G., et al. 2015, A&A, 580, A96
Eggenberger, P., Lagarde, N., Miglio, A., et al. 2017, A&A, 599, A18
Eggenberger, P., Deheuvels, S., Miglio, A., et al. 2019 a, A&A, 621, A66
Eggenberger, P., den Hartogh, J. W., Buldgen, G., et al. 2019 b, A&A, 631, L6
Eggenberger, P., Buldgen, G., & Salmon, S. J. A. J. 2019 c, A&A, 626, L1
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Fuller, J., Piro, A. L., & Jermyn, A. S. 2019, MNRAS, 485, 3661
Gaia Collaboration (Brown, A. G. A., et al.) 2021, A&A, 650, C3
Gehan, C., Mosser, B., Michel, E., Samadi, R., & Kallinger, T. 2018, A&A, 616, A24
Goupil, M. J., Mosser, B., Marques, J. P., et al. 2013, A&A, 549, A75
Green, G. M., Schlafly, E. F., Finkbeiner, D., et al. 2018, MNRAS, 478, 651
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161
Huber, D., Carter, J. A., Barbieri, M., et al. 2013, Science, 342, 331
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Irwin, A. W. 2012,. Astrophysics Source Code Library [record ascl:1211.002]
Kissin, Y., & Thompson, C. 2015, ApJ, 808, 35
Klion, H., & Quataert, E. 2017, MNRAS, 464, L16
Landi, E., & Testa, P. 2015, ApJ, 800, 110
Ledoux, P. 1951, ApJ, 114, 373
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74
Montalbán, J., Miglio, A., Noels, A., Scuflaire, R., & Ventura, P. 2010, ApJ, 721, L182
Moré, J. J. 1978, in The Levenberg-Marquardt Algorithm: Implementation and Theory (Berlin: Springer-Verlag), Lect. Notes Math., 630, 105
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10
Pijpers, F. P. 1997, A&A, 326, 1235
Pijpers, F. P., & Thompson, M. J. 1994, A&A, 281, 231
Pinçon, C., Belkacem, K., Goupil, M. J., & Marques, J. P. 2017, A&A, 605, A31
Reese, D. R. 2015, A&A, 578, A37
Reese, D. R. 2016,. Astrophysics Source Code Library [record ascl:1611.014]
Reese, D., & Zharkov, S. 2016,. Astrophysics Source Code Library [record ascl:1612.013]
Reese, D. R., Marques, J. P., Goupil, M. J., Thompson, M. J., & Deheuvels, S. 2012, A&A, 539, A63
Rendle, B. M., Buldgen, G., Miglio, A., et al. 2019, MNRAS, 484, 771
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2014, in Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, eds. J. Oschmann, M. Jacobus, M. Clampin, G. G. Fazio, & H. A. MacEwen, SPIE Conf. Ser., 9143, 914320
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, J. Astron. Telesc. Instrum. Syst., 1, 014003
Scuflaire, R., Théado, S., Montalbán, J., et al. 2008 a, Ap&SS, 316, 83
Scuflaire, R., Montalbán, J., Théado, S., et al. 2008 b, Ap&SS, 316, 149
Spada, F., Gellert, M., Arlt, R., & Deheuvels, S. 2016, A&A, 589, A23
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.