[en] We present an analysis of hundreds of middle ultraviolet auroral spectra collected at the limb with the Imaging UltraViolet Spectrograph (IUVS) instrument on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. While the companion paper by Schneider etal.(2021), https://doi.org/10.1029/2021JA029428 focuses on the detection, location, and occurrence frequency of discrete auroral events, this study addresses the spectral properties and vertical profiles of the auroral emissions. Our independent selection of events is based on a combination of automatic and manual detection methods with adequate signal-to-noise ratio of both the CO Cameron bands and the CO2+ ultraviolet doublet (UVD) at 190–270 and 288–289nm, respectively. We find that the ratio of these two features remains quasi-constant for UVD intensities exceeding 200 rayleighs (R), but the CO Cameron/CO2+ UVD ratio may become increasingly large for low UVD intensities. Three weak N2 Vegard-Kaplan bands are identified in the Martian aurora for the first time. Limb profiles of the [OI] line at 297.2nm indicate that the visible oxygen green line brightness may reach a few kilorayleighs. The distribution of the altitude of the emission peaks in the aurora is identical in and out of the region of crustal magnetic field located in the southern hemisphere. Comparisons of in situ measurements of electron energy spectra and ultraviolet auroral detections have been made for five optical detections. They generally show temporal coincidence but not necessarily quantitative agreement with the altitude and brightness expected from the characteristics of the measured electron energy spectra.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Soret, Lauriane ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Schneider, Nicholas; University of Colorado at Boulder - CU > LASP
Jain, Sonal; University of Colorado at Boulder - CU > LASP
Milby, Zachariah; University of Colorado at Boulder - CU > LASP
Ritter, Birgit ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Weber, Tristant; National Aeronautics and Space Administration - NASA > GSFC > Solar System Exploration Division
Language :
English
Title :
Discrete Aurora on Mars: Spectral Properties, Vertical Profiles, and Electron Energies
Ajello, J. M. (1971). Emission cross sections of CO2 by electron impact in the interval 1260–4500 Å. II. The Journal of Chemical Physics, 55(7), 3169–3177. https://doi.org/10.1063/1.1676564
Avakyan, S. V., Ii'In, R. N., Lavrov, V. M., & Ogurtsov, G. N. (1999). Collision processes and excitation of UV emission from planetary atmospheric gases: A handbook of cross sections. CRC Press.
Bertaux, J.-L., Korablev, O., Perrier, S., Quémerais, E., Montmessin, F., Leblanc, F., et al. (2006). SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 111, E10S90. https://doi.org/10.1029/2006JE002690
Bertaux, J.-L., Leblanc, F., Witasse, O., Quemerais, E., Lilensten, J., Stern, S. A., et al. (2005). Discovery of an aurora on Mars. Nature, 435, 790–794. https://doi.org/10.1038/nature03603
Bisikalo, V., Shematovich, V., Gérard, J.-C., & Hubert, B. (2017). Influence of the crustal magnetic field on the Mars aurora electron flux and UV brightness. Icarus, 282, 127–135. https://doi.org/10.1016/j.icarus.2016.08.035
Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., et al. (2015). Mars Global Ionosphere-Thermosphere Model (MGITM): Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311–342. https://doi.org/10.1002/2014JE004715
Brain, D., Halekas, J., Peticolas, L., Lin, R., Luhmann, J., Mitchell, D., et al. (2006). On the origin of aurora on Mars. Geophysical Research Letters, 33, L01201. https://doi.org/10.1029/2005GL024782
Brain, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S., & Lin, R. P. (2007). Electron pitch angle distributions as indicators of magnetic field topology near Mars. Journal of Geophysical Research, 112, A09201. https://doi.org/10.1029/2007JA012435
Cox, C., Gérard, J. -C., Hubert, B., Bertaux, J.-L., & Bougher, S. W. (2010). Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. Journal of Geophysical Research, 115, E04010. https://doi.org/10.1029/2009JE003504
Deighan, J., Jain, S. K., Chaffin, M. S., Fang, X., Halekas, J. S., Clarke, J. T., et al. (2018). Discovery of a proton aurora at Mars. Nature Astronomy, 2, 802–807. https://doi.org/10.1038/s41550-018-0538-5
Erdman, P. W., & Zipf, E. C. (1983). Electron-impact excitation of the Cameron system (a3π → X1Σ) of CO. Planetary and Space Science, 31(3), 317–321. https://doi.org/10.1016/0032-0633(83)90082-X
Gérard, J. C., Aoki, S., Willame, Y., Gkouvelis, L., Depiesse, C., Thomas, I. R., et al. (2020). Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 4, 1049–1052. https://doi.org/10.1038/s41550-020-1123-2
Gérard, J.-C., Gkouvelis, L., Ritter, B., Hubert, B., Jain, S. K., & Schneider, N. M. (2019). MAVEN-IUVS Observations of the CO2+ UV doublet and CO Cameron bands in the Martian thermosphere: Aeronomy, seasonal, and latitudinal distribution. Journal of Geophysical Research: Space Physics, 124, 5816–5827. https://doi.org/10.1029/2019JA026596
Gérard, J.-C., Soret, L., Libert, L., Lundin, R., Stiepen, A., Radioti, A., & Bertaux, J. L. (2015). Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. Journal of Geophysical Research: Space Physics, 120, 6749–6765. https://doi.org/10.1002/2015JA021150
Gérard, J.-C., Soret, L., Shematovich, V. I., Bisikalo, D. V., & Bougher, S. W. (2017). The Mars diffuse aurora: A model of ultraviolet and visible emissions. Icarus, 288, 284–294. https://doi.org/10.1016/j.icarus.2017.01.037
González-Galindo, F., Jiménez-Monferrer, S., López-Valverde, M., García-Comas, M., & Forget, F. (2021). On the derivation of thermospheric temperatures from dayglow emissions on Mars. Icarus, 358, 114284. https://doi.org/10.1016/j.icarus.2020.114284
Jain, S. K., & Bhardwaj, A. (2011). Model calculation of N2 Vegard-Kaplan band emissions in Martian dayglow. Journal of Geophysical Research, 116, E07005. https://doi.org/10.1029/2010JE003778
Kramida, A., Ralchenko, Y., Reader, J., & NIST ASD Team. (2019). Atomic spectra database version 5.7.1 (NIST, 2019). Retrieved from https://physics.nist.gov/asd
Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., & Bertaux, J. L. (2006). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 111, E09S11. https://doi.org/10.1029/2005JE002664
Leblanc, F., Witasse, O., Lilensten, J., Frahm, R. A., Safaenili, A., Brain, D. A., et al. (2008). Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA-3 and MARSIS measurements. Journal of Geophysical Research, 113, A08311. https://doi.org/10.1029/2008JA013033
Lee, R. A., Ajello, J. M., Malone, C. P., Evans, J. S., Veibell, V., Holsclaw, G. M., et al. (2021). Laboratory study of the Cameron bands, the first negative bands, and fourth positive bands in the middle ultraviolet 180–280 nm by electron impact upon CO. Journal of Geophysical Research: Planets, 126, e2020JE006602. https://doi.org/10.1029/2020JE006602
Lilensten, J., Bernard, D., Barthélémy, M., Gronoff, G., Wedlund, C. S., & Opitz, A. (2015). Prediction of blue, red and green aurorae at Mars. Planetary and Space Science, 115, 48–56. https://doi.org/10.1016/j.pss.2015.04.015
Lillis, R. J., & Fang, X. (2015). Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects. Journal of Geophysical Research: Planets, 120, 1332–1345. https://doi.org/10.1002/2015JE004841
McClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., et al. (2015). The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Science Reviews, 195(1–4), 75–124. https://doi.org/10.1007/s11214-014-0098-7
Mitchell, D. L., Mazelle, C., Sauvaud, J.-A., Thocaven, J.-J., Rouzaud, J., Fedorov, A., et al. (2016). The MAVEN solar wind electron analyzer. Space Science Reviews, 200, 495–528. https://doi.org/10.1007/s11214-015-0232-1
Ritter, B., Gérard, J. C., Hubert, B., Rodriguez, L., & Montmessin, F. (2018). Observations of the proton aurora on Mars with SPICAM on board Mars Express. Geophysical Research Letters, 45, 612–619. https://doi.org/10.1002/2017GL076235
Schneider, N., Deighan, J. I., Jain, S. K., Stiepen, A., Stewart, A. I. F., Larson, D., et al. (2015). Discovery of diffuse aurora on Mars. Science, 350, 1–5. https://doi.org/10.1126/science.aad0313
Schneider, N., Jain, S. K., Deighan, J. I., Nasr, C. R., Brain, D. A., Larson, D., et al. (2018). Global aurora on mars during the September 2017 space weather event. Geophysical Research Letters, 45, 7391–7398. https://doi.org/10.1029/2018GL077772
Schneider, N. M., Milby, Z., Jain, S. K., Gérard, J.-C., Soret, L., Brain, D. A., et al. (2021). Discrete aurora on Mars: Insights into their distribution and activity from MAVEN/IUVS observations. Journal of Geophysical Research: Space Physics, 126, e2021JA029428. https://doi.org/10.1029/2021JA029428
Schneider, N., Milby, Z., Jain, S. K., González-Galindo, F., Royer, E., Gérard, J. C., et al. (2020). Imaging of Martian circulation patterns and atmospheric tides through MAVEN/IUVS nightglow observations. Journal of Geophysical Research: Space Physics, 125, e2019JA027318. https://doi.org/10.1029/2019JA027318
Shematovich, V. I., Bisikalo, D. V., & Gérard, J.-C. (1994). A kinetic model of the formation of the hot oxygen geocorona: 1. Quiet geomagnetic conditions. Journal of Geophysical Research, 99(23), 217–228. https://doi.org/10.1029/94JA01769
Shematovich, V. I., Bisikalo, D. V., Gérard, J.-C., Cox, C., Bougher, S. W., & Leblanc, F. (2008). Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. Journal of Geophysical Research, 113, E02011. https://doi.org/10.1029/2007JE002938
Shirai, T., Tabata, T., & Tawara, H. (2001). Analytic cross sections for electron collisions with CO, CO2, and H2O relevant to edge plasma impurities. Atomic Data and Nuclear Data Tables, 79(1), 143–184. https://doi.org/10.1006/adnd.2001.0866
Soret, L., Gérard, J.-C., Libert, L., Shematovich, V. I., Bisikalo, D. V., Stiepen, A., & Bertaux, J.-L. (2015). SPICAM observations and modeling of Mars aurorae. Icarus, 264, 398–406. https://doi.org/10.1016/j.icarus.2015.09.023
Stevens, M. H., Evans, J. S., Schneider, N. M., Stewart, A. I. F., Deighan, J., Jain, S. K., et al. (2015). New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophysical Research Letters, 42, 9050–9056. https://doi.org/10.1002/2015GL065319Si
Stiepen, A., Gérard, J.-C., Bougher, S., Montmessin, F., Hubert, B., & Bertaux, J.-L. (2015). Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express. Icarus, 245, 295–305. https://doi.org/10.1016/j.icarus.2014.09.051
Stiepen, A., Jain, S. K., Schneider, N. M., Deighan, J. I., González-Galindo, F., Gérard, J.-C., et al. (2017). Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions. Journal of Geophysical Research: Space Physics, 122, 5782–5797. https://doi.org/10.1002/2016JA023523
Weber, T. D. (2020). The role of crustal magnetic fields in atmospheric Escape from Mars (Doctoral dissertation). University of Colorado at Boulder, ProQuest Dissertations & Theses Global. Retrieved from https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/1544bq39m
Xu, S., Mitchell, D. L., McFadden, J. P., Fillingim, M. O., Andersson, L., Brain, D. A., et al. (2020). Inverted-V electron acceleration events concurring with localized auroral observations at Mars with MAVEN. Geophysical Research Letters, 47, e2020GL087414. https://doi.org/10.1029/2020GL087414