[en] This study highlights the possibility of using brewers' grains (BSGs) for the successive extraction of the main lignocellulosic biopolymers, namely cellulose, hemicelluloses and lignin. An exhaustive chemical characterization revealed a variability of composition in distinct batches of BSGs, depending on their origin and the brewing process used. In particular, the protein content can vary from 13 to 23 wt.%, which is accompanied by a change in the hemicelluloses content from 9 to 23% (in the samples of our study). By applying a two-step aqueous treatment, involving an acid (1.25% v/v aq. H2SO4) and a base (3% w/v aq. NaOH) at a temperature of 120°C and fixed reaction time of a few tens of minutes (15 to 90 min), more than 80% of hemicelluloses could be recovered. Cellulose could be isolated at more than 68%, while a high purity lignin could be recovered from a lignin-rich fraction (70wt.%). Our work also suggests that the variability of the chemical composition of these brewers' grains is a hindrance to achieving process standardization and large-scale exploitation. The pooling of various materials is therefore not a recommended option, and the preliminary chemical analysis of the composition is therefore a prerequisite for an efficient extraction process. [fr] Cette étude met en évidence la possibilité d'utiliser les drêches de brasserie pour l'extraction successive des principaux biopolymères lignocellulosiques, à savoir la cellulose, les hémicelluloses et la lignine. Une caractérisation chimique exhaustive a révélé une variabilité de la composition de lots distincts de drêches de brasserie, en fonction de leur origine et du procédé de brassage utilisé. En particulier, la teneur en protéines peut varier de 13 à 23 % en poids, ce qui s'accompagne d'une variation de la teneur en hémicelluloses de 9 à 23 % (dans les échantillons de notre étude). En appliquant un traitement aqueux en deux étapes, impliquant un acide (1,25% v/v aq. H2SO4) et une base (3% p/v aq. NaOH) à une température de 120°C et un temps de réaction fixe de quelques dizaines de minutes (15 à 90 min), plus de 80% des hémicelluloses ont pu être récupérées. La cellulose a pu être isolée à plus de 68%, tandis qu'une lignine de haute pureté a pu être récupérée à partir d'une fraction riche en lignine (70wt.%). Nos travaux suggèrent également que la variabilité de la composition chimique de ces drêches de brasserie est un frein à la standardisation des procédés et à leur exploitation à grande échelle. La mise en commun de diverses matières n'est donc pas une option recommandée, et l'analyse chimique préliminaire de la composition est donc une condition préalable à un processus d'extraction efficace.
Aguedo M Vanderghem C Goffin D, et al. (2013) Fast and high yield recovery of arabinose from destarched wheat bran. Industrial Crops and Products 43: 318–325.
Akermann A Weiermüller J Christmann J, et al. (2020) Brewers’ spent grain liquor as a feedstock for lactate production with Lactobacillus delbrueckii subsp lactis. Engineering in Life Sciences 20: 168–180.
Berchem T Schmetz Q Lepage T, et al. (2020) Single and mixed feedstocks biorefining: Comparison of primary metabolites recovery and lignin recombination during an alkaline process. Frontiers in Chemistry 8: 479–492.
Crawshaw R (2003) Co-product feeds: Animal feeds from the food and drinks industries R Crawshaw Nottingham University Press, Nottingham, 2001 pp 285, price £30.00 (paperback) ISBN 1-897676-35-2. Journal of the Science of Food and Agriculture 83: 362.
Dávila JA Rosenberg M Cardona CA (2016) A biorefinery approach for the production of xylitol, ethanol and polyhydroxybutyrate from brewer’s spent grain. AIMS Agriculture and Food 1: 52–66.
Fărcaş AC Socaci SA Dulf FV, et al. (2015) Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. Journal of Cereal Science 64: 34–42.
George A Simet K Carradorini A (2017) Brewer’s spent grain to xylitol & polylactic acid. Sr Des Reports. Available at: https://repository.upenn.edu/cbe_sdr/90/
Geron LJV Zeoula LM Erkel JA, et al. (2008) Digestibility coefficient and ruminal characteristics of cattle fed ration containing brewer grains. Brew Grains Journal 37: 0023.
Guarda EC Oliveira AC Antunes S, et al. (2021) A two-stage process for conversion of brewer’s spent grain into volatile fatty acids through acidogenic fermentation. Applied Sciences 11: 3222.
Heuzé V Tran G Rouillé B (2017) Coproduit de brasserie. Drèches de brasseries 10. Available at: https://idele.fr/?eID=cmis_download&oID=workspace://SpacesStore/66f891b4-b730-4c6a-beaa-be84ff834bdd
Ikurior SA (1995) Preservation of brewer’s years slurry by a simple on-farm adaptable technology and its effect on performance of weaner pigs. Animal Feed Science and Technology 53: 353–358.
Maniet G Schmetz Q Jacquet N, et al. (2017) Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Industrial Crops and Products 99: 79–85.
Mathias TRS Alexandre VMF Cammarota MC, et al. (2015) Characterization and determination of brewer’s solid wastes composition. Journal of the Institute of Brewing 121: 400–404.
Mussatto SI (2014) Brewer’s spent grain: A valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture 94: 1264–1275.
Ong A Chi-Lik KL (2021) Cooperative metabolism in mixed culture solid-state fermentation. Lebensmittel-Wissenschaft & Technologie 152: 112300.
Outeiriño D Costa-Trigo I Pinheiro de Souza Oliveira R, et al. (2019) A novel approach to the biorefinery of brewery spent grain. Process Biochemistry 85: 135–142.
Santos M Jiménez JJ Bartolomé B, et al. (2003) Variability of brewer’s spent grain within a brewery. Food Chemistry 80: 17–21.
Sluiter A Hames B Ruiz R, et al. (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), Issue Date 17 July 2005. Available at: https://www.nrel.gov/docs/gen/fy08/42619.pdf
Sluiter A Hames B Ruiz RO, et al. (2004) Determination of ash in biomass, Biomass Analysis Technology Team Laboratory Analytical Procedure. Technical Report - NREL/TP-510-42618. Available at: http://www.nrel.gov/biomass/analytical_procedures.html
Stefanello FS dos Santos CO Bochi VC, et al. (2018) Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chemistry 239: 385–401.