[en] In power systems, large-scale optimisation problems are extensively used to plan for capacity expansion at the supranational level. However, their cost-optimal solutions are often not exploitable by decision-makers who are preferably looking for features of solutions that can accommodate their different requirements. This paper proposes a generic framework for
addressing this problem. It is based on the concept of the epsilon-optimal feasible space of a given optimisation problem and the identification of necessary conditions over this space. This framework has been developed in a generic case, and an approach for solving this problem is subsequently described for a specific case where conditions are constrained sums of variables. The approach is tested on a case study about capacity expansion planning of the European electricity network to determine necessary conditions on the minimal investments in transmission, storage and generation capacity.
Disciplines :
Sciences informatiques Energie
Auteur, co-auteur :
Dubois, Antoine ; Université de Liège - ULiège > Faculté des Sciences Appliquées > Form. doct. sc. ingé. & techno. (éléctr., électro.&info.pay) ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Ernst, Damien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Langue du document :
Anglais
Titre :
Computing Necessary Conditions for Near-Optimality in Capacity Expansion Planning Problems
Date de publication/diffusion :
octobre 2022
Titre du périodique :
Electric Power Systems Research
ISSN :
0378-7796
eISSN :
1873-2046
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
211
Peer reviewed :
Peer reviewed vérifié par ORBi
Objectif de développement durable (ODD) :
7. Energie propre et d'un coût abordable 9. Industrie, innovation et infrastructure
Brill, E.D., Flach, J.M., Hopkins, L.D., Ranjithan, S., MGA: A Decision support system for complex, incompletely defined problems. IEEE Trans. Syst. Man Cybern. 20:4 (1990), 745–757.
Ravetz, I., What is post-normal science. Futures-J. Forecast. Plan. Policy 31:7 (1999), 647–654.
Yue, X., Pye, S., DeCarolis, J., Li, F.G., Rogan, F., Gallachóir, B.O., A review of approaches to uncertainty assessment in energy system optimization models. Energy Strateg. Rev. 21 (2018), 204–217.
Trutnevyte, E., Does cost optimization approximate the real-world energy transition?. Energy 106 (2016), 182–193.
Brill Jr., E.D., The use of optimization models in public-sector planning. Manage. Sci. 25:5 (1979), 413–422.
Ehrgott, M., Multicriteria Optimization, Vol. 491. 2005, Springer Science & Business Media.
Brill, D., Chang, S.-Y., Hopkins, L., Modeling to generate alternatives: The HSJ approach and an illustration using a problem in land use planning. Manage. Sci. 28:3 (1982), 221–235.
DeCarolis, J.F., Using modeling to generate alternatives (MGA) to expand our thinking on energy futures. Energy Econ. 33:2 (2011), 145–152.
James, P., Ilkka, K., Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models. Appl. Energy 195 (2017), 356–369.
Li, F.G., Trutnevyte, E., Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050. Appl. Energy 189 (2017), 89–109.
Nacken, L., Krebs, F., Fischer, T., Hoffmann, C., Integrated renewable energy systems for Germany–A model-based exploration of the decision space. 2019 16th International Conference on the European Energy Market (EEM), 2019, IEEE, 1–8.
Sasse, J.-P., Trutnevyte, E., Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation. Appl. Energy, 254, 2019, 113724.
Neumann, F., Brown, T., The near-optimal feasible space of a renewable power system model. Electr. Power Syst. Res., 190, 2021, 106690.
Bandaru, S., Ng, A.H., Deb, K., Data mining methods for knowledge discovery in multi-objective optimization: Part A-survey. Expert Syst. Appl. 70 (2017), 139–159.
Brown, T., Hörsch, J., Schlachtberger, D., PyPSA: PYthon for power system analysis. J. Open Res. Softw., 6(4), 2018.
A. Dubois, D. Radu, REplan, https://github.com/montefesp/REplan.
Hoersch, J., Hofmann, F., Schlachtberger, D., Brown, T., PyPSA-Eur: AN open optimisation model of the European transmission system. Energy Strateg. Rev. 22 (2018), 207–215.
Open Power System Data. Data package time series. version 2019-06-05. 2019 [Online]. Available: https://data.open-power-system-data.org/time_series/2019-06-05.
Pfenninger, S., Staffell, I., Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114 (2016), 1251–1265.
Staffell, I., Pfenninger, S., Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114 (2016), 1224–1239.
Ryberg, D., Robinius, M., Stolten, D., Evaluating land eligibility constraints of renewable energy sources in europe. Energies, 11(5), 2018, 1246.
Bocin, A., Hidalgo Gonzalez, I., Kanellopoulos, K., De Felice, M., JRC Open power plants database (JRC-PPDB-open). European commission, joint research centre (JRC). 2019 [Online]. Available: http://data.europa.eu/89h/9810feeb-f062-49cd-8e76-8d8cfd488a05.
European Commission, EU Reference Scenario 2016 - Energy, transport and GHG emissions Trends to 2050, 68, [Online]. Available: https://ec.europa.eu/energy/sites/ener/files/documents/20160713%20draft_publication_REF2016_v13.pdf.
De Felice, M., Peronato, G., Kavvadias, K., Energy-modelling-toolkit/hydro-power-database: JRC hydro-power database - release 10 (version v10). 2021 [Online]. Available: https://doi.org/10.5281/zenodo.5215920.
Radu, D., Berger, M., Dubois, A., Fonteneau, R., Pandžić, H., Dvorkin, Y., Louveaux, Q., Ernst, D., Assessing the impact of offshore wind siting strategies on the design of the European power system. Appl. Energy, 305, 2022, 117700.
Dubois, A., Radu, D., Computing necessary conditions for near-optimality in capacity expansion planning problems - code. 2021 https://zenodo.org/record/6107173.
Dubois, A., Radu, D., Berger, M., Computing necessary conditions for near-optimality in capacity expansion planning problems - dataset. 2021 https://zenodo.org/record/5519081.
A. Dubois, D. Radu, EPIPPy - Expansion planning input preprocessing in python, https://github.com/montefesp/EPIPPy.