[en] A stabiliser is added to gun and rocket propellants to react with species responsible for degradation during decomposition. Propellant powder manufacturers and army personnel are confronted with toxicity during powder degradation and must replace current stabilisers with non-toxic molecules. According to the STANAG 4582 (North Atlantic Treaty Organization (NATO) Standardisation Agreement [1]), propellant powders must remain chemically stable for a minimum of ten years when stored at temperatures equivalent to an isothermal storage (25 °C). Single and double base smokeless powders with α-ionone as a “green” stabiliser are tested and the results show that the heat flow is stable over time and that the autocatalysis occurs 2 to 3 times later than in powders with conventional stabilisers. This stabiliser is efficient for all nitrate ester-based propellants. In the present paper, we identify and monitor the evolution of the main degradation products over time by nuclear magnetic resonance (NMR), mass spectrometry (MS) to unravel the stabilisation mechanism under accelerated aging conditions. A time-related fluctuation of their respective amounts (increasing then decreasing, then re-increasing, …) is observed, which indicates that the daughter products have also a stabilisation effect. The three major α-ionone daughter products are identified as: 3-oxo-α-ionone, 4-oxo-β-ionone and 4,5-epoxy-α-ionone.
Research Center/Unit :
Mass Spectrometry Laboratory
Disciplines :
Chemistry
Author, co-author :
Damseaux, Caroline ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Scholl, Georges ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Analytical Research and Technology (CART)
Damblon, Christian ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique structurale
Dejeaifve, Alain; Eurenco, PB Clermont > R & D Departement
Dobson, Rowan; Eurenco, PB Clermont > R & D Departement
Ma, Xiaofeng; Université Catholique de Louvain - UCL > Chimie > Organic and Medicinal Chemistry Laboratories
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Marko, Istvan; Université Catholique de Louvain - UCL > Chimie > Organic and Medicinal Chemistry Laboratories
Language :
English
Title :
Identification of the Degradation Products from α-Ionone Used as Stabiliser in “Green” Propellants through its Lifetime
Alternative titles :
[fr] Identification des produits de dégradation de l'α-ionone utilisés comme stabilisant dans les poudres propulsives « vertes » pendant toute leur durée de vie
NATO Standardization Agreement (NATO STANAG) 4582, Explosives, Nitrocellulose Based Propellants, Stability Test Procedure and Requirements Using Heat Flow Calorimetry, NSA(2007)0, 2007.
A. Dejeaifve, A. Fantin, L. Monseur, R. Dobson, Making Progress Towards «Green» Propellants, Propellants Explos. Pyrotech. 2018 43, 831–837, DOI:10.1002/prep.201800026.
E. Rozumov, Recent Advances in Gun Propellant Development: From Molecules to Materials, Springer Nature, 2017, 25, DOI:10.1007/978-3-319-59208-4_2.
W. P. C. De Klerk, Assessment of Stability of Propellants and Safe Lifetimes, Propellants Explos. Pyrotech. 2015, 40, 388–393, DOI:10.1002/prep.201500040.
T. B. Brill, P. E. Gongwer, Thermal Decomposition of Energetic Materials 69. Analysis of the Kinetics of Nitrocellulose at 50 °C-500 °C, Propellants Explos. Pyrotech. 1997, 22, 38–44, DOI:10.1002/prep.19970220109.
K. Katoh, S. Yoshino, S. Kubota, Y. Wada, Y. Ogata, M. Nakahama, S. Kawaguchi, M. Arai, The Effects of Conventional Stabilizers and Phenol Compounds Used as Antioxidants on the Stabilization of Nitrocellulose, Propellants Explos. Pyrotech. 2007, 32, 314–321, DOI:10.1002/prep.200700034.
P. Guillaume, M. Rat, G. Pantel, S. Wilker, Heat Flow Calorimetry of Propellants - Effects of Sample Preparation and Measuring Conditions, Propellants Explos. Pyrotech. 2001, 26, 51–57, DOI:10.1002/1521-4087(200104)26: 2<51::AID-PREP51>3.0.CO;2-H.
M. Heil, J. Hickmann, C. Müller, Thermal Characterization of Naturally Aged Propellants, Propellants Explos. Pyrotech. 2019, 44, 687–695, DOI:10.1002/prep.201800334.
N. Halilovic, M. Kaucic-Skufca, Z. Ademovic, A. Basic-Halilovic, R. Omanovic, Analysis of Stability of Naturally Aged Single Base Propellants, African J. Pure Appl. Chem. 2021, 15, 1–7, DOI:10.5897/ajpac2020.0859.
D. Setyaningsih, A. L. Juwono, H. Supriyatno, Stabilizer Effect on Thermal Decomposition of Aged Solid Propellant, J. Phys. Conf. Ser. 2017, 909, DOI:10.1088/1742-6596/909/1/012077.
A. Chin, D. S. Ellison, S. K. Poehlein, M. K. Ahn, Investigation of the Decomposition Mechanism and Thermal Stability of Nitrocellulose/Nitroglycerine Based Propellants by Electron Spin Resonance, Propellants Explos. Pyrotech. 2007, 32, 117–126, DOI:10.1002/prep.200700013.
D. Trache, A. F. Tarchoun, Stabilizers for Nitrate Ester-Based Energetic Materials and Their Mechanism of Action: A State-of-the-Art Review, Springer US, J. Mater. Sci. 2018, 53, 100–123, DOI:10.1007/s10853-017-1474-y.
C. P. Lin, J. S. Li, J. M. Tseng, M. S. Mannan, Thermal Runaway Reaction for Highly Exothermic Material in Safe Storage Temperature, Elsevier Ltd, J. Loss Prev. Process Ind. 2016, 40, 259–265, DOI:10.1016/j.jlp.2016.01.006.
P. Krumlinde, S. Ek, E. Tunestal, A. Hafstrand, Synthesis and Characterization of Novel Stabilizers for Nitrocellulose-Based Propellants, Propellants Explos. Pyrotech. 2017, 42, 78–83, DOI:10.1002/prep.201600122.
L. S. Lussier, E. Bergeron, H. Gagnon, Study of the Daughter Products of Akardite-II, Propellants Explos. Pyrotech. 2006, 31, 253–262, DOI:10.1002/prep.200600034.
O. Frys, P. Bajerova, A. Eisner, J. Skladal, K. Ventura, Utilization of New Non-Toxic Substances as Stabilizers for Nitrocellulose-Based Propellants, Propellants Explos. Pyrotech. 2011, 36, 347–355, DOI:10.1002/prep.201000043.
S. Wilker, G. Heeb, B. Vogelsanger, J. Petrzílek, J. Skladal, Triphenylamine - A “new” Stabilizer for Nitrocellulose Based Propellants - Part I: Chemical Stability Studies, Propellants Explos. Pyrotech. 2007, 32, 135–148, DOI:10.1002/prep.200700014.
J. Bladek, S. Wilker, S. Pietrzyk, S. Cudzilo, A Novel Method for Testing Propellant Stabilizers, Cent. Eur. J. Energ. Mater. 2010, 7, 281–287.
M. A. Zayed, A. A. W. Soliman, M. A. Hassan, Evaluation of Malonanilides as New Stabilizers for Double-Base Propellants. (I), J. Hazard. Mater. 2000, 73, 237–244, DOI:10.1016/S0304-3894(99)00153–3.
M. A. Zayed, A. A. Mohamed, M. A. M. Hassan, Stability Studies of Double-Base Propellants with Centralite and Malonanilide Stabilizers Using MO Calculations in Comparison to Thermal Studies, Elsevier B. V., J. Hazard. Mater. 2010, 179, 453–461, DOI:10.1016/j.jhazmat.2010.03.025.
M. A. Hassan, Effect of Malonyl Malonanilide Dimers on the Thermal Stability of Nitrocellulose, J. Hazard. Mater. 2001, 88, 33–49, DOI:10.1016/S0304-3894(01)00297–7.
Q. Tang, X. Fan, J. Li, F. Bi, X. Fu, L. Zhai, Experimental and Theoretical Studies on Stability of New Stabilizers for N-Methyl-P-Nitroaniline Derivative in CMDB Propellants, Elsevier B. V., J. Hazard. Mater. 2017, 327, 187–196, DOI:10.1016/j.jhazmat.2016.12.049.
G. Li, B. Jin, Z. Chai, L. Liao, S. Chu, R. Peng, Synthesis and Stabilization Mechanism of Novel Stabilizers for Fullerene-Malonamide Derivatives in Nitrocellulose-Based Propellants, Elsevier Ltd, Polym. Test. 2020, 86, 106493, DOI:10.1016/j.polymertesting.2020.106493.
E. Tunestål, A. Hafstrand, A. Lindborg, S. Ek, P. Goede, P. Krumlinde, C. Schragen, New stabilizers for NC-propellants Evaluated in Rocket Propellants, Insensitive Munitions Energ. Mater. Technol. Symp., Rome, Italy, May 18–21 2015, https://imemg.org/wp-content/uploads/2015/06/2 A2-17467-New-stabilizers-for-NC-propellants-final.pdf.
M. A. Zayed, S. E. M. El-Begawy, H. E. S. Hassan, Mechanism Study of Stabilization of Double-Base Propellants by Using Zeolite Stabilizers (Nano- and Micro-Clinoptilolite), King Saud University, Arab. J. Chem. 2017, 10, 573–581, DOI:10.1016/j.arabjc.2013.08.021.
A. Dejeaifve, A. Sarbach, B. Roduit, P. Folly, R. Dobson, Making Progress Towards «Green» Propellants – Part II, Propellants Explos. Pyrotech. 2020, 45, 1185–1193, DOI:10.1002/prep.202000059.
R. L. B. Rodrigues, M. F. Lemos, T. C. C. França, L. G. M. Filho, Development of Nitrocellulose-Based Propellants with Natural Stabilizers, J. Aerosp. Technol. Manag. 2019, 11, 3–6, DOI:10.5028/jatm.etmq.40.
R. L. B. Rodrigues, P. A. Gomes Buitrago, N. L. Nakano, F. C. Peixoto, M. F. Lemos, T. C. C. França, L. G. Mendonça Filho, Can Green Nitrocellulose-Based Propellants Be Made through the Replacement of Diphenylamine by the Natural Product Curcumin?, Taylor & Francis, J. Energ. Mater. 2021, 00, 1–24, DOI:10.1080/07370652.2020.1859646.
A. Dejeaifve, R. Dobson, Ionone Stabilisers for Nitrocellulose-Based Propellants, 2018, US 2018/0029951 A1, PB Clermont, Engis, Belgium.
K. Ganczyk-Specjalska, Conventional and Alternative Nitrocellulose Stabilisers Used in Gun Propellants, High Energy Materials, Conv. Altern. Nitrocellul. stabilisers used gun propellants 2019, 73–82, DOI:10.22211/matwys/0175.
J. A. Mathis, B. R. McCord, Gradient Reversed-Phase Liquid Chromatographic-Electrospray Ionization Mass Spectrometric Method for the Comparison of Smokeless Powders, J. Chromatogr. A 2003, 988, 107–116, DOI:10.1016/S0021-9673(02)02055–1.
K. L. Reese, A. D. Jones, R. W. Smith, Characterization of Smokeless Powders Using Multiplexed Collision-Induced Dissociation Mass Spectrometry and Chemometric Procedures, Elsevier Ireland Ltd, Forensic Sci. Int. 2017, 272, 16–27, DOI:10.1016/j.forsciint.2016.12.021.
M. Lopez-Lopez, A. F. de la O. Maria, S. G. Jorge, L. F. Jose, V. Alfonso, T. Mercedes, G.-R. Carmen, New Protocol for the Isolation of Nitrocellulose from Gunpowders: Utility in Their Identification, Talanta 2010, 81, 1742–1749, DOI:10.1016/j.talanta.2010.03.033.
A. M. Walwil, The Mass Spectra Analysis for α-Ionone and β-Ionone, Int. J. Chem. 2017, 9, 61, DOI:10.5539/ijc.v9n3p61.
E. D. Babot, C. Aranda, J. C. Del Rĺo, R. Ullrich, J. Kiebist, K. Scheibner, M. Hofrichter, A. T. Martĺnez, A. Gutiérrez, Selective Oxygenation of Ionones and Damascones by Fungal Peroxygenases, J. Agric. Food Chem. 2020, 68, 5375–5383, DOI:10.1021/acs.jafc.0c01019.
M. Szori, C. Fittschen, I. G. Csizmadia, B. Viskolcz, Allylic H-Abstraction Mechanism: The Potential Energy Surface of the Reaction of Propene with OH Radical, J. Chem. Theory Comput. 2006, 2, 1575–1586, DOI:10.1021/ct600140b.
J. Hoggett, R. B. Moodie, J. R. Penton, K. Schofield, Nitration and Aromatic Reactivity., Syndics Of The Cambridge University Press, Cambridge Univ. Press 1972, 84.
G. Wypych, Uv Degradation & Stabilization of Polymers & Rubbers, Handb. UV Degrad. Stab. 2015, DOI:10.1016/b978-1-895198-86-7.50009–7.
R. Radi, Nitric Oxide, Oxidants, and Protein Tyrosine Nitration, Proc. Natl. Acad. Sci. USA 2004, 101, 4003–4008, DOI:10.1073/pnas.0307446101.