Influence of aperiodic non-tidal atmospheric and oceanic loading deformations on the stochastic properties of global GNSS vertical land motion time series
Gobron, Kevin; Rebischung, Paul; Van Camp, Michelet al.
2021 • In Journal of Geophysical Research. Solid Earth, 126
Demoulin, Alain ; Université de Liège - ULiège > Département de géographie > Unité de géographie physique et quaternaire (UGPQ)
de Viron, Olivier
Language :
English
Title :
Influence of aperiodic non-tidal atmospheric and oceanic loading deformations on the stochastic properties of global GNSS vertical land motion time series
Agnew, D. C. (1992). The time-domain behavior of power-law noises. Geophysical Research Letters, 19(4), 333–336. https://doi.org/10.1029/91GL02832
Amiri-Simkooei, A. (2007). Least-squares variance component estimation: Theory and GPS applications (unpublished doctoral dissertation). TU Delft, Delft University of Technology.
Amiri-Simkooei, A. (2009). Noise in multivariate GPS position time-series. Journal of Geodesy, 83(2), 175–187. https://doi.org/10.1007/s00190-008-0251-8
Amiri-Simkooei, A. (2013). On the nature of GPS draconitic year periodic pattern in multivariate position time series. Journal of Geophysical Research: Solid Earth, 118(5), 2500–2511. https://doi.org/10.1002/jgrb.50199
Amiri-Simkooei, A. (2016). Non-negative least-squares variance component estimation with application to GPS time series. Journal of Geodesy, 90(5), 451–466. https://doi.org/10.1007/s00190-016-0886-9
Amiri-Simkooei, A., Hosseini-Asl, M., Asgari, J., & Zangeneh-Nejad, F. (2019). Offset detection in GPS position time series using multivariate analysis. GPS Solutions, 23(1), 13. https://doi.org/10.1007/s10291-018-0805-z
Amiri-Simkooei, A., Mohammadloo, T., & Argus, D. (2017). Multivariate analysis of GPS position time series of JPL second reprocessing campaign. Journal of Geodesy, 91(6), 685–704. https://doi.org/10.1007/s00190-016-0991-9
Amiri-Simkooei, A., Tiberius, C., & Teunissen, S. P. (2007). Assessment of noise in GPS coordinate time series: Methodology and results. Journal of Geophysical Research, 112(B7). https://doi.org/10.1029/2006JB004913
Baarda, W. (1968). A testing procedure for use in geodetic networks (Vol. 2). Publication on Geodesy.
Ballu, V., Gravelle, M., Wöppelmann, G., de Viron, O., Rebischung, P., Becker, M., & Sakic, P. (2019). Vertical land motion in the Southwest and Central Pacific from available GNSS solutions and implications for relative sea levels. Geophysical Journal International, 218(3), 1537–1551. https://doi.org/10.1093/gji/ggz247
Benoist, C., Collilieux, X., Rebischung, P., Altamimi, Z., Jamet, O., Métivier, L., et al. (2020). Accounting for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities. Journal of Geodynamics, 135, 101693. https://doi.org/10.1016/j.jog.2020.101693
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., et al. (2020). GipsyX/RTGx, A new tool set for space geodetic operations and research. Advances in Space Research, 66, 469, 489. https://doi.org/10.1016/j.asr.2020.04.015
Bevis, M., & Brown, A. (2014). Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy, 88(3), 283–311. https://doi.org/10.1007/s00190-013-0685-5
Blewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. Journal of Geophysical Research, 108(B2). https://doi.org/10.1029/2002JB002082
Blewitt, G., Hammond, W. C., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, 1–2. https://doi.org/10.1029/2018EO104623
Blewitt, G., & Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research, 107(B7), 9–1. https://doi.org/10.1029/2001JB000570
Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research, 111(B2). https://doi.org/10.1029/2005JB003629
Böhm, J., Niell, A., Tregoning, P., & Schuh, H. (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33(7). https://doi.org/10.1029/2005GL025546
Bos, M., Fernandes, R., Williams, S., & Bastos, L. (2008). Fast error analysis of continuous GPS observations. Journal of Geodesy, 82(3), 157–166. https://doi.org/10.1007/s00190-007-0165-x
Bos, M., Montillet, J.-P., Williams, S., & Fernandes, R. M. (2020). Introduction to geodetic time series analysis. In: Geodetic time series analysis in earth sciences (pp. 29–52). Springer. https://doi.org/10.1007/978-3-030-21718-1_2
Calais, E. (1999). Continuous GPS measurements across the Western Alps, 1996–1998. Geophysical Journal International, 138(1), 221–230. https://doi.org/10.1046/j.1365-246x.1999.00862.x
Chanard, K., Fleitout, L., Calais, E., Rebischung, P., & Avouac, J.-P. (2018). Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series. Journal of Geophysical Research: Solid Earth, 123(4), 3225–3237. https://doi.org/10.1002/2017JB015245
Craig, T. J., & Calais, E. (2014). Strain accumulation in the New Madrid and Wabash Valley seismic zones from 14 years of continuous GPS observation. Journal of Geophysical Research: Solid Earth, 119(12), 9110–9129. https://doi.org/10.1002/2014JB011498
Dach, R., Böhm, J., Lutz, S., Steigenberger, P., & Beutler, G. (2011). Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. Journal of Geodesy, 85(2), 75–91. https://doi.org/10.1007/s00190-010-0417-z
Dill, R., & Dobslaw, H. (2013). Numerical simulations of global-scale high-resolution hydrological crustal deformations. Journal of Geophysical Research: Solid Earth, 118(9), 5008–5017. https://doi.org/10.1002/jgrb.50353
Elliott, J., Walters, R., & Wright, T. (2016). The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, 7(1), 1–16. https://doi.org/10.1038/ncomms13844
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., et al. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth, 118(5), 2397–2407. https://doi.org/10.1002/jgrb.50152
Gegout, P., Boy, J.-P., Hinderer, J., & Ferhat, G. (2010). Modeling and observation of loading contribution to time-variable GPS sites positions. In: Gravity, geoid and earth observation (pp. 651–659). Springer. https://doi.org/10.1007/978-3-642-10634-7_86
Gruszczynski, M., Klos, A., & Bogusz, J. (2019). A filtering of incomplete GNSS position time series with probabilistic Principal Component Analysis. In: Geodynamics and Earth tides observations from global to micro scale (pp. 247–273). Springer. https://doi.org/10.1007/s00024-018-1856-3
Husson, L., Bodin, T., Spada, G., Choblet, G., & Kreemer, C. (2018). Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of Glacial Isostatic Adjustment. Journal of Geodynamics, 122, 25–40. https://doi.org/10.1016/j.jog.2018.10.002
Kennett, B. L., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
Klos, A., & Bogusz, J. (2017). An evaluation of velocity estimates with a correlated noise: Case study of IGS ITRF2014 European stations. Acta Geodynamica et Geomaterialia, 14(3), 255–271. https://doi.org/10.13168/AGG.2017.0009
Klos, A., Bogusz, J., Bos, M. S., & Gruszczynska, M. (2020). Modelling the GNSS time series: Different approaches to extract seasonal signals. In: Geodetic time series analysis in earth sciences (pp. 211–237). Springer. https://doi.org/10.1007/978-3-030-21718-1_7
Klos, A., Bogusz, J., Figurski, M., & Kosek, W. (2015). On the handling of outliers in the GNSS time series by means of the noise and probability analysis. In: IAG 150 years (pp. 657–664). Springer. https://doi.org/10.1007/1345_2015_78
Klos, A., Bos, M. S., Fernandes, R. M., & Bogusz, J. (2019). Noise-dependent adaption of the Wiener filter for the GPS position time series. Mathematical Geosciences, 51(1), 53–73. https://doi.org/10.1007/s11004-018-9760-z
Klos, A., Dobslaw, H., Dill, R., & Bogusz, J. (2021). Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions: Examining vertical displacements from continental Eurasia. GPS Solutions, 25(3), 1–17. https://doi.org/10.1007/s10291-021-01135-w
Koch, K. (1986). Maximum likelihood estimate of variance components. Bulletin Gæodésique, 60(4), 329–338. https://doi.org/10.1007/BF02522340
Kreemer, C., & Blewitt, G. (2021). Robust estimation of spatially varying common-mode components in GPS time-series. Journal of Geodesy, 95(1), 1–19. https://doi.org/10.1007/s00190-020-01466-5
Kreemer, C., Blewitt, G., & Davis, P. M. (2020). Geodetic evidence for a buoyant mantle plume beneath the Eifel volcanic area, NW Europe. Geophysical Journal International, 222(2), 1316–1332. https://doi.org/10.1093/gji/ggaa227
Langbein, J. (2004). Noise in two-color electronic distance meter measurements revisited. Journal of Geophysical Research, 109(B4). https://doi.org/10.1029/2003JB002819
Langbein, J. (2008). Noise in GPS displacement measurements from Southern California and Southern Nevada. Journal of Geophysical Research, 113(B5). https://doi.org/10.1029/2007JB005247
Langbein, J. (2017). Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors. Journal of Geodesy, 91(8), 985–994. https://doi.org/10.1007/s00190-017-1002-5
Langbein, J., & Svarc, J. L. (2019). Evaluation of temporally correlated noise in global navigation satellite system time series: Geodetic monument performance. Journal of Geophysical Research: Solid Earth, 124(1), 925–942. https://doi.org/10.1029/2018JB016783
Männel, B., Dobslaw, H., Dill, R., Glaser, S., Balidakis, K., Thomas, M., & Schuh, H. (2019). Correcting surface loading at the observation level: Impact on global GNSS and VLBI station networks. Journal of Geodesy, 93(10), 2003–2017. https://doi.org/10.1007/s00190-019-01298-y
Mao, A., Harrison, C. G., & Dixon, T. H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research, 104(B2), 2797–2816. https://doi.org/10.1029/1998JB900033
Martens, H. R., Argus, D. F., Norberg, C., Blewitt, G., Herring, T. A., Moore, A. W., et al. (2020). Atmospheric pressure loading in GPS positions: Dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska. Journal of Geodesy, 94(12), 1–22. https://doi.org/10.1007/s00190-020-01445-w
Masson, C., Mazzotti, S., Vernant, P., & Doerflinger, E. (2019). Extracting small deformation beyond individual station precision from dense Global Navigation Satellite System (GNSS) networks in France and western Europe. Solid Earth, 10(6), 1905–1920. https://doi.org/10.5194/se-10-1905-2019
Mémin, A., Boy, J.-P., & Santamaria-Gomez, A. (2020). Correcting GPS measurements for non-tidal loading. GPS Solutions, 24(2), 1–13. https://doi.org/10.1007/s00190-010-0376-
Nocquet, J.-M., Calais, E., & Parsons, B. (2005). Geodetic constraints on glacial isostatic adjustment in Europe. Geophysical Research Letters, 32(6). https://doi.org/10.1029/2004GL022174
Petit, G., & Luzum, B. (2010). IERS conventions (2010) (Tech. Rep.). Bureau International des Poids et Mesures, Sevres (France). Retrieved from https://apps.dtic.mil/sti/citations/ADA535671
Pfeffer, J., & Allemand, P. (2016). The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth and Planetary Science Letters, 439, 39–47. https://doi.org/10.1016/j.epsl.2016.01.027
Ray, J., Altamimi, Z., Collilieux, X., & van Dam, T. (2008). Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions, 12(1), 55–64. https://doi.org/10.1007/s10291-007-0067-7
Ray, J., Griffiths, J., Collilieux, X., & Rebischung, P. (2013). Subseasonal GNSS positioning errors. Geophysical Research Letters, 40(22), 5854–5860. https://doi.org/10.1002/2013GL058160
Razeghi, S., Amiri-Simkooei, A., & Sharifi, M. (2016). Coloured noise effects on deformation parameters of permanent GPS networks. Geophysical Journal International, 204(3), 1843–1886. https://doi.org/10.1093/gji/ggv499
Santamaría-Gómez, A., Bouin, M.-N., Collilieux, X., & Wöppelmann, G. (2011). Correlated errors in GPS position time series: Implications for velocity estimates. Journal of Geophysical Research, 116(B1). https://doi.org/10.1029/2010JB007701
Santamaría-Gómez, A., & Mémin, A. (2015). Geodetic secular velocity errors due to interannual surface loading deformation. Geophysical Journal International, 202(2), 763–767. https://doi.org/10.1093/gji/ggv190
Santamaría-Gómez, A., & Ray, J. (2021). Chameleonic noise in GPS position time series. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB019541. https://doi.org/10.1029/2020JB019541
Schumacher, M., King, M., Rougier, J., Sha, Z., Khan, S. A., & Bamber, J. (2018). A new global GPS data set for testing and improving modelled GIA uplift rates. Geophysical Journal International, 214(3), 2164–2176. https://doi.org/10.1093/gji/ggy235
Selle, C., Desai, S., Garcia Fernandez, M., & Sibois, A. (2014). Spectral analysis of GPS-based station positioning time series from PPP solutions. In: 2014 IGS workshop.
Steigenberger, P., Boehm, J., & Tesmer, V. (2009). Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. Journal of Geodesy, 83(10), 943–951. https://doi.org/10.1007/s00190-009-0311-8
Teunissen, P. (1988). Towards a least-squares framework for adjusting and testing of both functional and stochastic models. Curtin Research Publications
Teunissen, P. (2000a). Adjustment theory, Series on Mathematical geodesy and positioning. Delft University Press.
Teunissen, P. (2000b). Testing theory an introduction, Series on Mathematical geodesy and positioning. Delft University Press.
Teunissen, P., & Amiri-Simkooei, A. (2008). Least-squares variance component estimation. Journal of Geodesy, 82(2), 65–82. https://doi.org/10.1007/s00190-007-0157-x
Tregoning, P., & van Dam, T. (2005). Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophysical Research Letters, 32(22). https://doi.org/10.1029/2005GL024104
Tregoning, P., & Watson, C. (2009). Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research, 114(B9). https://doi.org/10.1029/2009JB006344
Tregoning, P., Watson, C., Ramillien, G., McQueen, H., & Zhang, J. (2009). Detecting hydrologic deformation using GRACE and GPS. Geophysical Research Letters, 36(15). https://doi.org/10.1029/2009GL038718
Van Camp, M., Williams, S., & Francis, O. (2005). Uncertainty of absolute gravity measurements. Journal of Geophysical Research, 110(B5). https://doi.org/10.1029/2004JB003497
Van Dam, T., Blewitt, G., & Heflin, M. (1994). Detection of atmospheric pressure loading using the Global Positioning System. Journal of Geophysical Research, 99(B12), 23939–23950. https://doi.org/10.1029/94jb02122 Retrieved from http://hdl.handle.net/10993/685
Van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., & Ray, J. (2012). Nontidal ocean loading: Amplitudes and potential effects in GPS height time series. Journal of Geodesy, 86(11), 1043–1057. https://doi.org/10.1007/s00190-012-0564-5
Van Dam, T., & Wahr, J. (1987). Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements. Journal of Geophysical Research, 92(B2), 1281–1286. https://doi.org/10.1029/jb092ib02p01281
Van Dam, T., Wahr, J., Milly, P., Shmakin, A., Blewitt, G., Lavallée, D., & Larson, K. (2001). Crustal displacements due to continental water loading. Geophysical Research Letters, 28(4), 651–654. https://doi.org/10.1029/2000GL012120
Wackernagel, H. (2013). Multivariate geostatistics: An introduction with applications. Springer Science & Business Media.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research, 102(B8), 18057–18070. https://doi.org/10.1029/97JB01378
Williams, S. (2003a). The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy, 76(9–10), 483–494. https://doi.org/10.1007/s00190-002-0283-4
Williams, S. (2003b). Offsets in global positioning system time series. Journal of Geophysical Research, 108(B6). https://doi.org/10.1029/2002JB002156
Williams, S. (2008). CATS: GPS coordinate time series analysis software. GPS Solutions, 12(2), 147–153. https://doi.org/10.1007/s10291-007-0086-4
Williams, S., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., & Johnson, D. J. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research, 109(B3). https://doi.org/10.1029/2003JB002741
Williams, S., & Penna, N. (2011). Non-tidal ocean loading effects on geodetic GPS heights. Geophysical Research Letters, 38(9). https://doi.org/10.1029/2011GL046940
Wöppelmann, G., & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54(1), 64–92. https://doi.org/10.1002/2015RG000502
Wöppelmann, G., Miguez, B. M., Bouin, M.-N., & Altamimi, Z. (2007). Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global and Planetary Change, 57(3–4), 396–406. https://doi.org/10.1016/j.gloplacha.2007.02.002
Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S., Genrich, J., et al. (1997). Southern California Permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. Journal of Geophysical Research earth, 102(B8), 18035–18055. https://doi.org/10.1029/97JB01380
Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., & Webb, F. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3), 5005–5017. https://doi.org/10.1029/96JB03860