Mengen, D.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Montzka, C.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Jagdhuber, T.; German Aerospace Center, Microwaves and Radar Institute, Wessling, 82234, Germany, Institute of Geography, University of Augsburg, Augsburg, 86135, Germany
Fluhrer, A.; German Aerospace Center, Microwaves and Radar Institute, Wessling, 82234, Germany, Institute of Geography, University of Augsburg, Augsburg, 86135, Germany
Brogi, C.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Baum, S.; Forschungszentrum Jülich, Institute of Bio‐ and Geosciences: Plant Sciences (IBG‐2), Jülich, 52428, Germany
Schüttemeyer, D.; Mission Science Division, European Space Agency, Noordwijk, 2201, Netherlands
Bayat, B.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Bogena, H.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401, doi:10.1007/s10584‐014‐1084‐5.
IPCC. Climate Change 2013: The physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013.
Dudula, J.; Randhir, T.O. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices. J. Hydrol. 2016, 541, 703–713, doi:10.1016/j.jhydrol.2016.07.020.
Wu, P.; Christidis, N.; Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nat. Clim. Chang. 2013, 3, 807–810, doi:10.1038/nclimate1932.
UNFCCC. Adoption of the Paris Agreement; Report No. FCCC/CP/2015/L.9/Rev.1; UNFCCC: Paris, France, 2015.
Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat‐Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data‐Poor Regions. Water Resour. Res. 2018, 54, 9724–9758, doi:10.1029/2017WR022437.
Gleason, C.J.; Wada, Y.; Wang, J. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation. J. Adv. Model. Earth Syst. 2018, 10, 2–17, doi:10.1002/2017MS000986.
ESA. Copernicus L‐band SAR Mission Requirements Document. Available online: https://esamultimedia.esa.int/docs/EarthObservation/Copernicus_L‐band_SAR_mission_ROSE‐L_MRD_v2.0_issued.pdf (accessed on 20 January 2020).
El Hajj, M.; Baghdadi, N.; Bazzi, H.; Zribi, M. Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands. Remote Sens. 2019, 11, 31, doi:10.3390/rs11010031.
De Roo, R.D.; Du Yang; Ulaby, F.T.; Dobson, M.C. A semi‐empirical backscattering model at L‐band and C‐band for a soybean canopy with soil moisture inversion. IEEE Trans. Geosci. Remote Sens. 2001, 39, 864–872, doi:10.1109/36.917912.
Steele‐Dunne, S.C.; McNairn, H.; Monsivais‐Huertero, A.; Judge, J.; Liu, P.‐W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273, doi:10.1109/JSTARS.2016.2639043.
NASA. Available online: https://nisar.jpl.nasa.gov/mission/quick‐facts/(accessed on 17 June 2020).
European Space Agency. AgriSAR 2006: Agricultural Bio‐/Geophysical Retrievals from Frequent Repeat SAR and Optical Imaging; European Space Agency: Paris, France, 2006.
European Space Agency. TropiSAR: Tropical Forest Biomass Mapping Using L‐ and P‐Band SAR; European Space Agency: Paris, France, 2009.
Chapin, E.; Chau, A.; Chen, J.; Heavey, B.; Hensley, S.; Lou, Y.; Machuzak, R.; Moghaddam, M. AirMOSS: An Airborne P‐band SAR to measure root‐zone soil moisture. In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; IEEE: Piscataway, NJ, USA, 2012; ISBN 9781467306577.
NASA. NASA & ISRO ASAR Campaign (L‐ and S‐band) Deployment‐UAVSAR. Available online: https://uavsar.jpl.nasa.gov/cgi‐bin/deployment.pl?id=L20191101 (accessed on 18 December 2020).
Chapman, B.; Siqueira, P.; Saatchi, S.; Simard, M.; Kellndorfer, J. Initial results from the 2019 NISAR Ecosystem Cal/Val Exercise in the SE USA. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2019; pp. 8641–8644, ISBN 978‐1‐5386‐9154‐0.
Vereecken, H.; Weihermüller, L.; Jonard, F.; Montzka, C. Characterization of Crop Canopies and Water Stress Related Phenomena using Microwave Remote Sensing Methods: A Review. Vadose Zone J. 2012, 11, vzj2011‐0138ra, doi:10.2136/vzj2011.0138ra.
Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.‐C.; Bizzarri, B.; Wigneron, J.‐P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res. 2007, 38, 1–20, doi:10.2166/nh.2007.029.
Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, 1879, doi:10.1029/2008WR006829.
Sharma, P.; Kumar, D.; Srivastava, H. Assessment of Different Methods for Soil Moisture Estimation: A Review. J. Remote Sens. GIS 2018, 9, 57–73.
Liu, C.‐A.; Chen, Z.‐X.; Shao, Y.; Chen, J.‐S.; Hasi, T.; Pan, H.‐Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525, doi:10.1016/S2095‐3119(18)62016‐7.
Di Martino, G.; Iodice, A.; Poreh, D.; Riccio, D. Soil Moisture Retrieval from Polarimetric Sar Data: A Short Review of Existing Methods and a New One, Living Planet Symp. 2016, 740, 136
Arii, M.; Yamada, H.; Kobayashi, T.; Kojima, S.; Umehara, T.; Komatsu, T.; Nishimura, T. Theoretical Characterization of X‐ Band Multiincidence Angle and Multipolarimetric SAR Data From Rice Paddies at Late Vegetative Stage. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2706–2715, doi:10.1109/TGRS.2017.2652447.
Blumberg, D.G.; Freilikher, V.; Lyalko, I.V.; Vulfson, L.D.; Kotlyar, A.L.; Shevchenko, V.N.; Ryabokonenko, A.D. Soil Moisture (Water‐Content) Assessment by an Airborne Scatterometer. Remote Sens. Environ. 2000, 71, 309–319, doi:10.1016/S0034‐ 4257(99)00087‐5.
Ulaby, F.; Batlivala, P.; Dobson, M. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I‐Bare Soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295, doi:10.1109/TGE.1978.294586.
Ulaby, F.T.; Bradley, G.A.; Dobson, M.C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part II‐Vegetation‐Covered Soil. IEEE Trans. Geosci. Electron. 1979, 17, 33–40, doi:10.1109/TGE.1979.294626.
Verma, N.; Mishra, P.; Purohit, N. Effect of Surface Roughness Parameter on Soil Moisture of Wheat Field in Growing Stage: An Application of Sentinel‐1 SAR Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019–2 August 2019; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2019; pp. 5929–5932, ISBN 978‐1‐5386‐9154‐0.
Alemohammad, S.H.; Jagdhuber, T.; Moghaddam, M.; Entekhabi, D. Soil and Vegetation Scattering Contributions in L‐Band and P‐Band Polarimetric SAR Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8417–8429, doi:10.1109/TGRS.2019.2920995.
Harfenmeister, K.; Spengler, D.; Weltzien, C. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel‐1 Backscatter Data. Remote Sens. 2019, 11, 1569, doi:10.3390/rs11131569.
Erten, E.; Lopez‐Sanchez, J.M.; Yuzugullu, O.; Hajnsek, I. Retrieval of agricultural crop height from space: A comparison of SAR techniques. Remote Sens. Environ. 2016, 187, 130–144, doi:10.1016/j.rse.2016.10.007.
Notarnicola, C.; Posa, F. Inferring Vegetation Water Content From C‐ and L‐Band SAR Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3165–3171, doi:10.1109/TGRS.2007.903698.
Montzka, C.; Brogi, C.; Mengen, D.; Matveeva, M.; Baum, S.; Schüttemeyer, D.; Bayat, B.; Bogena, H.; Coccia, A.; Masalias, D.; et al. SARSENSE: A C‐ and L‐Band SAR Rehearsal Campaign in Germany in Preparation for Rose‐L. Int. Geosci. Remote Sens. Symp. 2020, 4277, 1–4
Bogena, H.R.; Montzka, C.; Huisman, J.A.; Graf, A.; Schmidt, M.; Stockinger, M.; von Hebel, C.; Hendricks‐Franssen, H.J.; van der Kruk, J.; Tappe, W.; et al. The TERENO‐Rur Hydrological Observatory: A Multiscale Multi‐Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone J. 2018, 17, 180055, doi:10.2136/vzj2018.03.0055.
Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach‐Bahl, K.; et al. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone J. 2011, 10, 955–973, doi:10.2136/vzj2010.0139.
Jonard, F.; Weihermuller, L.; Schwank, M.; Jadoon, K.Z.; Vereecken, H.; Lambot, S. Estimation of Hydraulic Properties of a Sandy Soil Using Ground‐Based Active and Passive Microwave Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3095– 3109, doi:10.1109/TGRS.2014.2368831.
Meyer, T.; Weihermüller, L.; Vereecken, H.; Jonard, F. Vegetation Optical Depth and Soil Moisture Retrieved from L‐Band Radiometry over the Growth Cycle of a Winter Wheat. Remote Sens. 2018, 10, 1637, doi:10.3390/rs10101637.
Hasan, S.; Montzka, C.; Rüdiger, C.; Ali, M.; Bogena, H.R.; Vereecken, H. Soil moisture retrieval from airborne L‐band passive microwave using high resolution multispectral data. ISPRS J. Photogramm. Remote Sens. 2014, 91, 59–71, doi:10.1016/j.isprsjprs.2014.02.005.
Montzka, C.; Bogena, H.R.; Weihermuller, L.; Jonard, F.; Bouzinac, C.; Kainulainen, J.; Balling, J.E.; Loew, A.; dallʹAmico, J.T.; Rouhe, E.; et al. Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Campaign in the Rur and Erft Catchments, Germany. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1728–1743, doi:10.1109/TGRS.2012.2206031.
Montzka, C.; Jagdhuber, T.; Horn, R.; Bogena, H.R.; Hajnsek, I.; Reigber, A.; Vereecken, H. Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L‐Band Microwave Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3878–3889, doi:10.1109/TGRS.2016.2529659.
Thünen Projekte. Selhausen (C1)‐Thünen Projekte. Available online: https://www.icos‐infrastruktur.de/icos-d/komponenten/oekosysteme/beobachtungsstandorte/selhausen‐c1/(accessed on 16 December 2020).
Weihermüller, L.; Huisman, J.A.; Lambot, S.; Herbst, M.; Vereecken, H. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 2007, 340, 205–216, doi:10.1016/j.jhydrol.2007.04.013.
Brogi, C.; Huisman, J.A.; Pätzold, S.; von Hebel, C.; Weihermüller, L.; Kaufmann, M.S.; van der Kruk, J.; Vereecken, H. Large-scale soil mapping using multi‐configuration EMI and supervised image classification. Geoderma 2019, 335, 133–148, doi:10.1016/j.geoderma.2018.08.001.
Rudolph, S.; van der Kruk, J.; von Hebel, C.; Ali, M.; Herbst, M.; Montzka, C.; Pätzold, S.; Robinson, D.A.; Vereecken, H.; Weihermüller, L. Linking satellite derived LAI patterns with subsoil heterogeneity using large‐scale ground‐based electromagnetic induction measurements. Geoderma 2015, 241, 262–271, doi:10.1016/j.geoderma.2014.11.015.
Brogi, C.; Huisman, J.A.; Herbst, M.; Weihermüller, L.; Klosterhalfen, A.; Montzka, C.; Reichenau, T.G.; Vereecken, H. Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics‐based quantitative soil information. Vadose Zone J. 2020, 19, 2026, doi:10.1002/vzj2.20009.
Herbst, M.; Pohlig, P.; Graf, A.; Weihermüller, L.; Schmidt, M.; Vanderborght, J.; Vereecken, H. Quantification of water stress induced within‐field variability of carbon dioxide fluxes in a sugar beet stand. Agric. For. Meteorol. 2021, 297, 108242, doi:10.1016/j.agrformet.2020.108242.
Masante, D.; Barbosa, P.; Magni, D. EDO Analytical Report: Drought in Europe‐August 2019. Available online: https://www.gdacs.org/Public/download.aspx?type=DC&id=194 (accessed on 4 February 2020).
Ulaby, F.T.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989; ISBN 978‐ 0890063361.
Fletcher, K. ESAʹs Radar Observatory Mission for GMES Operational Services; ESA SP ESA‐SP‐1322/1; ESA: Noordwijk, The Netherlands, 2012.
ESA. The Sentinel Application Platform (SNAP), a Common Architecture for All Sentinel Toolboxes Being Jointly Developed by Brockmann Consult, Array Systems Computing and C‐S. Available online: http://step.esa.int/main/download/(accessed on 18 November 2019).
Google. Sentinel‐1 Algorithms. Available online: https://developers.google.com/earth‐engine/sentinel1 (accessed on 18 November 2019).
Propeller. Ground Control Points for Drone Surveys & Mapping|AeroPoints. Available online: https://www.propelleraero.com/aeropoints/(accessed on 16 December 2020).
Chiabrando, F.; Teppati Losè, L. Performance evaluation of cots uav for architectural heritage documentation. A test on s.giuliano chapel in savigliano (cn)–Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 77–84, doi:10.5194/isprs-archives‐XLII‐2‐W6‐77‐2017.
FLIR Vue Pro R|FLIR Systems. Available online: https://www.flir.de/products/vue‐pro‐r/(accessed on 16 December 2020).
Stevens Water. HydraProbe|Stevens Water. Available online: https://stevenswater.com/products/hydraprobe/(accessed on 16 December 2020).
Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric Loss and Calibration of the Hydra Probe Soil Water Sensor. Vadose Zone J. 2005, 4, 1070–1079, doi:10.2136/vzj2004.0148.
Köhli, M.; Schrön, M.; Zreda, M.; Schmidt, U.; Dietrich, P.; Zacharias, S. Footprint characteristics revised for field‐scale soil moisture monitoring with cosmic‐ray neutrons. Water Resour. Res. 2015, 51, 5772–5790, doi:10.1002/2015WR017169.
Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons. Geophys. Res. Lett. 2008, 35, 362, doi:10.1029/2008GL035655.
Jakobi, J.; Huisman, J.A.; Schrön, M.; Fiedler, J.; Brogi, C.; Vereecken, H.; Bogena, H.R. Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2020, 2, 4079, doi:10.3389/frwa.2020.00010.
Desilets, D.; Zreda, M.; Ferré, T.P.A. Natureʹs neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 2010, 46, 2454, doi:10.1029/2009WR008726.
Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low‐Cost Soil Water Content Sensors. Sensors 2017, 17, 208, doi:10.3390/s17010208.
Delta, T. SunScan Canopy Analysis‐Canopy Analyser‐LAI‐PAR. Available online: https://www.delta‐t.co.uk/product/sunscan/(accessed on 16 December 2020).
KONICA MINOLTA Europe. Available online: https://www5.konicaminolta.eu/de/messgeraete/produkte/farbmessung/chlorophyll‐messgeraet/spad‐ 502plus/einfuehrung.html?gclid=CjwKCAiA_eb‐BRB2EiwAGBnXXssTMesBxvkJy3Qtc4bsrCFzLXrD8DU9XafeTUCX3oyCkt‐ 1tq2BPxoCjCgQAvD_BwE (accessed on 16 December 2020).
Lee, J.S.; Wen, J.H.; Ainsworth, T. L.; Chen, K.S.; Chen, A. J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sensing 2009, 47, 202‐213. doi: 10.1109/TGRS.2008.2002881.
Balenzano, A.; Mattia, F.; Satalino, G.; Davidson, M.W.J. Dense Temporal Series of C‐ and L‐band SAR Data for Soil Moisture Retrieval Over Agricultural Crops. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 439–450, doi:10.1109/JSTARS.2010.2052916.
Wegmüller, U.; Santoro, M.; Mattia, F.; Balenzano, A.; Satalino, G.; Marzahn, P.; Fischer, G.; Ludwig, R.; Floury, N. Progress in the understanding of narrow directional microwave scattering of agricultural fields. Remote Sens. Environ. 2011, 115, 2423–2433, doi:10.1016/j.rse.2011.04.026.
Fontanelli, G.; Paloscia, S.; Zribi, M.; Chahbi, A. Sensitivity analysis of X‐band SAR to wheat and barley leaf area index in the Merguellil Basin. Remote Sens. Lett. 2013, 4, 1107–1116, doi:10.1080/2150704X.2013.842285.
Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 2001, 39, 873–884, doi:10.1109/36.917914.
Santi, E.; Fontanelli, G.; Montomoli, F.; Brogioni, M.; Macelloni, G.; Paloscia, S.; Pettinato, S.; Pampaloni, P. The retrieval and monitoring of vegetation parameters from COSMO‐SkyMed images. In Proceedings of the IGARSS 2012—2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22 July–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 7031–7034, ISBN 978‐1‐4673‐1159‐5.
Morrison, K.; Wagner, W. Explaining Anomalies in SAR and Scatterometer Soil Moisture Retrievals From Dry Soils with Subsurface Scattering. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2190–2197, doi:10.1109/TGRS.2019.2954771.
Block, B. Die Zuckerrübe. In Rübensirup: Seine Herstellung, Beurteilung und Verwendung; Block, B., Ed.; Springer: Berlin/Heidelberg, Germany, 1920; pp. 10–18, ISBN 978‐3‐662‐33861‐2.
Wang, H.; Magagi, R.; Goïta, K.; Wang, K. Soil moisture retrievals using ALOS2‐ScanSAR and MODIS synergy over Tibetan Plateau. Remote Sens. Environ. 2020, 251, 112100, doi:10.1016/j.rse.2020.112100.
Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518, doi:10.1109/36.485127.
Vermunt, P.C.; Khabbazan, S.; Steele‐Dunne, S.C.; Judge, J.; Monsivais‐Huertero, A.; Guerriero, L.; Liu, P.‐W. Response of Subdaily L‐Band Backscatter to Internal and Surface Canopy Water Dynamics. IEEE Trans. Geosci. Remote Sens. 2020, 1–16, doi:10.1109/TGRS.2020.3035881.
Riedel, T.; Pathe, C.; Thiel, C.; Herold, M.; Schmullius, C. Systematic investigation on the effect of dew and interception on multifrequency and multipolarimetric radar backscatter signals. Retr. Bio‐ Geo‐Phys. Parameters SAR Data Land Appl. 2001, 475, 99–104.
Allen, C. T.; Ulaby, F. T. Characterization of the Microwave Extinction Properties of Vegetation Canopies; University of Michigan, College of Engineering, Radiation Laboratory: Ann Arbor, MI, USA, 1984.
Easterday, K.; Kislik, C.; Dawson, T.; Hogan, S.; Kelly, M. Remotely Sensed Water Limitation in Vegetation: Insights from an Experiment with Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 1853, doi:10.3390/rs11161853.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.