Mengen, D.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Montzka, C.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Jagdhuber, T.; German Aerospace Center, Microwaves and Radar Institute, Wessling, 82234, Germany, Institute of Geography, University of Augsburg, Augsburg, 86135, Germany
Fluhrer, A.; German Aerospace Center, Microwaves and Radar Institute, Wessling, 82234, Germany, Institute of Geography, University of Augsburg, Augsburg, 86135, Germany
Brogi, C.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Baum, S.; Forschungszentrum Jülich, Institute of Bio‐ and Geosciences: Plant Sciences (IBG‐2), Jülich, 52428, Germany
Schüttemeyer, D.; Mission Science Division, European Space Agency, Noordwijk, 2201, Netherlands
Bayat, B.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Bogena, H.; Forschungszentrum Jülich, Institute of Bio‐and Geosciences: Agrosphere (IBG‐3), Jülich, 52428, Germany
Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401, doi:10.1007/s10584‐014‐1084‐5.
IPCC. Climate Change 2013: The physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013.
Dudula, J.; Randhir, T.O. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices. J. Hydrol. 2016, 541, 703–713, doi:10.1016/j.jhydrol.2016.07.020.
Wu, P.; Christidis, N.; Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nat. Clim. Chang. 2013, 3, 807–810, doi:10.1038/nclimate1932.
UNFCCC. Adoption of the Paris Agreement; Report No. FCCC/CP/2015/L.9/Rev.1; UNFCCC: Paris, France, 2015.
Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat‐Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data‐Poor Regions. Water Resour. Res. 2018, 54, 9724–9758, doi:10.1029/2017WR022437.
Gleason, C.J.; Wada, Y.; Wang, J. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation. J. Adv. Model. Earth Syst. 2018, 10, 2–17, doi:10.1002/2017MS000986.
ESA. Copernicus L‐band SAR Mission Requirements Document. Available online: https://esamultimedia.esa.int/docs/EarthObservation/Copernicus_L‐band_SAR_mission_ROSE‐L_MRD_v2.0_issued.pdf (accessed on 20 January 2020).
El Hajj, M.; Baghdadi, N.; Bazzi, H.; Zribi, M. Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands. Remote Sens. 2019, 11, 31, doi:10.3390/rs11010031.
De Roo, R.D.; Du Yang; Ulaby, F.T.; Dobson, M.C. A semi‐empirical backscattering model at L‐band and C‐band for a soybean canopy with soil moisture inversion. IEEE Trans. Geosci. Remote Sens. 2001, 39, 864–872, doi:10.1109/36.917912.
Steele‐Dunne, S.C.; McNairn, H.; Monsivais‐Huertero, A.; Judge, J.; Liu, P.‐W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273, doi:10.1109/JSTARS.2016.2639043.
NASA. Available online: https://nisar.jpl.nasa.gov/mission/quick‐facts/(accessed on 17 June 2020).
European Space Agency. AgriSAR 2006: Agricultural Bio‐/Geophysical Retrievals from Frequent Repeat SAR and Optical Imaging; European Space Agency: Paris, France, 2006.
European Space Agency. TropiSAR: Tropical Forest Biomass Mapping Using L‐ and P‐Band SAR; European Space Agency: Paris, France, 2009.
Chapin, E.; Chau, A.; Chen, J.; Heavey, B.; Hensley, S.; Lou, Y.; Machuzak, R.; Moghaddam, M. AirMOSS: An Airborne P‐band SAR to measure root‐zone soil moisture. In Proceedings of the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; IEEE: Piscataway, NJ, USA, 2012; ISBN 9781467306577.
NASA. NASA & ISRO ASAR Campaign (L‐ and S‐band) Deployment‐UAVSAR. Available online: https://uavsar.jpl.nasa.gov/cgi‐bin/deployment.pl?id=L20191101 (accessed on 18 December 2020).
Chapman, B.; Siqueira, P.; Saatchi, S.; Simard, M.; Kellndorfer, J. Initial results from the 2019 NISAR Ecosystem Cal/Val Exercise in the SE USA. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2019; pp. 8641–8644, ISBN 978‐1‐5386‐9154‐0.
Vereecken, H.; Weihermüller, L.; Jonard, F.; Montzka, C. Characterization of Crop Canopies and Water Stress Related Phenomena using Microwave Remote Sensing Methods: A Review. Vadose Zone J. 2012, 11, vzj2011‐0138ra, doi:10.2136/vzj2011.0138ra.
Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.‐C.; Bizzarri, B.; Wigneron, J.‐P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res. 2007, 38, 1–20, doi:10.2166/nh.2007.029.
Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, 1879, doi:10.1029/2008WR006829.
Sharma, P.; Kumar, D.; Srivastava, H. Assessment of Different Methods for Soil Moisture Estimation: A Review. J. Remote Sens. GIS 2018, 9, 57–73.
Liu, C.‐A.; Chen, Z.‐X.; Shao, Y.; Chen, J.‐S.; Hasi, T.; Pan, H.‐Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525, doi:10.1016/S2095‐3119(18)62016‐7.
Di Martino, G.; Iodice, A.; Poreh, D.; Riccio, D. Soil Moisture Retrieval from Polarimetric Sar Data: A Short Review of Existing Methods and a New One, Living Planet Symp. 2016, 740, 136
Arii, M.; Yamada, H.; Kobayashi, T.; Kojima, S.; Umehara, T.; Komatsu, T.; Nishimura, T. Theoretical Characterization of X‐ Band Multiincidence Angle and Multipolarimetric SAR Data From Rice Paddies at Late Vegetative Stage. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2706–2715, doi:10.1109/TGRS.2017.2652447.
Blumberg, D.G.; Freilikher, V.; Lyalko, I.V.; Vulfson, L.D.; Kotlyar, A.L.; Shevchenko, V.N.; Ryabokonenko, A.D. Soil Moisture (Water‐Content) Assessment by an Airborne Scatterometer. Remote Sens. Environ. 2000, 71, 309–319, doi:10.1016/S0034‐ 4257(99)00087‐5.
Ulaby, F.; Batlivala, P.; Dobson, M. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I‐Bare Soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295, doi:10.1109/TGE.1978.294586.
Ulaby, F.T.; Bradley, G.A.; Dobson, M.C. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part II‐Vegetation‐Covered Soil. IEEE Trans. Geosci. Electron. 1979, 17, 33–40, doi:10.1109/TGE.1979.294626.
Verma, N.; Mishra, P.; Purohit, N. Effect of Surface Roughness Parameter on Soil Moisture of Wheat Field in Growing Stage: An Application of Sentinel‐1 SAR Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019–2 August 2019; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2019; pp. 5929–5932, ISBN 978‐1‐5386‐9154‐0.
Alemohammad, S.H.; Jagdhuber, T.; Moghaddam, M.; Entekhabi, D. Soil and Vegetation Scattering Contributions in L‐Band and P‐Band Polarimetric SAR Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8417–8429, doi:10.1109/TGRS.2019.2920995.
Harfenmeister, K.; Spengler, D.; Weltzien, C. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel‐1 Backscatter Data. Remote Sens. 2019, 11, 1569, doi:10.3390/rs11131569.
Erten, E.; Lopez‐Sanchez, J.M.; Yuzugullu, O.; Hajnsek, I. Retrieval of agricultural crop height from space: A comparison of SAR techniques. Remote Sens. Environ. 2016, 187, 130–144, doi:10.1016/j.rse.2016.10.007.
Notarnicola, C.; Posa, F. Inferring Vegetation Water Content From C‐ and L‐Band SAR Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3165–3171, doi:10.1109/TGRS.2007.903698.
Montzka, C.; Brogi, C.; Mengen, D.; Matveeva, M.; Baum, S.; Schüttemeyer, D.; Bayat, B.; Bogena, H.; Coccia, A.; Masalias, D.; et al. SARSENSE: A C‐ and L‐Band SAR Rehearsal Campaign in Germany in Preparation for Rose‐L. Int. Geosci. Remote Sens. Symp. 2020, 4277, 1–4
Bogena, H.R.; Montzka, C.; Huisman, J.A.; Graf, A.; Schmidt, M.; Stockinger, M.; von Hebel, C.; Hendricks‐Franssen, H.J.; van der Kruk, J.; Tappe, W.; et al. The TERENO‐Rur Hydrological Observatory: A Multiscale Multi‐Compartment Research Platform for the Advancement of Hydrological Science. Vadose Zone J. 2018, 17, 180055, doi:10.2136/vzj2018.03.0055.
Zacharias, S.; Bogena, H.; Samaniego, L.; Mauder, M.; Fuß, R.; Pütz, T.; Frenzel, M.; Schwank, M.; Baessler, C.; Butterbach‐Bahl, K.; et al. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone J. 2011, 10, 955–973, doi:10.2136/vzj2010.0139.
Jonard, F.; Weihermuller, L.; Schwank, M.; Jadoon, K.Z.; Vereecken, H.; Lambot, S. Estimation of Hydraulic Properties of a Sandy Soil Using Ground‐Based Active and Passive Microwave Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3095– 3109, doi:10.1109/TGRS.2014.2368831.
Meyer, T.; Weihermüller, L.; Vereecken, H.; Jonard, F. Vegetation Optical Depth and Soil Moisture Retrieved from L‐Band Radiometry over the Growth Cycle of a Winter Wheat. Remote Sens. 2018, 10, 1637, doi:10.3390/rs10101637.
Hasan, S.; Montzka, C.; Rüdiger, C.; Ali, M.; Bogena, H.R.; Vereecken, H. Soil moisture retrieval from airborne L‐band passive microwave using high resolution multispectral data. ISPRS J. Photogramm. Remote Sens. 2014, 91, 59–71, doi:10.1016/j.isprsjprs.2014.02.005.
Montzka, C.; Bogena, H.R.; Weihermuller, L.; Jonard, F.; Bouzinac, C.; Kainulainen, J.; Balling, J.E.; Loew, A.; dallʹAmico, J.T.; Rouhe, E.; et al. Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Campaign in the Rur and Erft Catchments, Germany. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1728–1743, doi:10.1109/TGRS.2012.2206031.
Montzka, C.; Jagdhuber, T.; Horn, R.; Bogena, H.R.; Hajnsek, I.; Reigber, A.; Vereecken, H. Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L‐Band Microwave Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3878–3889, doi:10.1109/TGRS.2016.2529659.
Thünen Projekte. Selhausen (C1)‐Thünen Projekte. Available online: https://www.icos‐infrastruktur.de/icos-d/komponenten/oekosysteme/beobachtungsstandorte/selhausen‐c1/(accessed on 16 December 2020).
Weihermüller, L.; Huisman, J.A.; Lambot, S.; Herbst, M.; Vereecken, H. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 2007, 340, 205–216, doi:10.1016/j.jhydrol.2007.04.013.
Brogi, C.; Huisman, J.A.; Pätzold, S.; von Hebel, C.; Weihermüller, L.; Kaufmann, M.S.; van der Kruk, J.; Vereecken, H. Large-scale soil mapping using multi‐configuration EMI and supervised image classification. Geoderma 2019, 335, 133–148, doi:10.1016/j.geoderma.2018.08.001.
Rudolph, S.; van der Kruk, J.; von Hebel, C.; Ali, M.; Herbst, M.; Montzka, C.; Pätzold, S.; Robinson, D.A.; Vereecken, H.; Weihermüller, L. Linking satellite derived LAI patterns with subsoil heterogeneity using large‐scale ground‐based electromagnetic induction measurements. Geoderma 2015, 241, 262–271, doi:10.1016/j.geoderma.2014.11.015.
Brogi, C.; Huisman, J.A.; Herbst, M.; Weihermüller, L.; Klosterhalfen, A.; Montzka, C.; Reichenau, T.G.; Vereecken, H. Simulation of spatial variability in crop leaf area index and yield using agroecosystem modeling and geophysics‐based quantitative soil information. Vadose Zone J. 2020, 19, 2026, doi:10.1002/vzj2.20009.
Herbst, M.; Pohlig, P.; Graf, A.; Weihermüller, L.; Schmidt, M.; Vanderborght, J.; Vereecken, H. Quantification of water stress induced within‐field variability of carbon dioxide fluxes in a sugar beet stand. Agric. For. Meteorol. 2021, 297, 108242, doi:10.1016/j.agrformet.2020.108242.
Masante, D.; Barbosa, P.; Magni, D. EDO Analytical Report: Drought in Europe‐August 2019. Available online: https://www.gdacs.org/Public/download.aspx?type=DC&id=194 (accessed on 4 February 2020).
Ulaby, F.T.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989; ISBN 978‐ 0890063361.
Fletcher, K. ESAʹs Radar Observatory Mission for GMES Operational Services; ESA SP ESA‐SP‐1322/1; ESA: Noordwijk, The Netherlands, 2012.
ESA. The Sentinel Application Platform (SNAP), a Common Architecture for All Sentinel Toolboxes Being Jointly Developed by Brockmann Consult, Array Systems Computing and C‐S. Available online: http://step.esa.int/main/download/(accessed on 18 November 2019).
Google. Sentinel‐1 Algorithms. Available online: https://developers.google.com/earth‐engine/sentinel1 (accessed on 18 November 2019).
Propeller. Ground Control Points for Drone Surveys & Mapping|AeroPoints. Available online: https://www.propelleraero.com/aeropoints/(accessed on 16 December 2020).
Chiabrando, F.; Teppati Losè, L. Performance evaluation of cots uav for architectural heritage documentation. A test on s.giuliano chapel in savigliano (cn)–Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 77–84, doi:10.5194/isprs-archives‐XLII‐2‐W6‐77‐2017.
FLIR Vue Pro R|FLIR Systems. Available online: https://www.flir.de/products/vue‐pro‐r/(accessed on 16 December 2020).
Stevens Water. HydraProbe|Stevens Water. Available online: https://stevenswater.com/products/hydraprobe/(accessed on 16 December 2020).
Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric Loss and Calibration of the Hydra Probe Soil Water Sensor. Vadose Zone J. 2005, 4, 1070–1079, doi:10.2136/vzj2004.0148.
Köhli, M.; Schrön, M.; Zreda, M.; Schmidt, U.; Dietrich, P.; Zacharias, S. Footprint characteristics revised for field‐scale soil moisture monitoring with cosmic‐ray neutrons. Water Resour. Res. 2015, 51, 5772–5790, doi:10.1002/2015WR017169.
Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons. Geophys. Res. Lett. 2008, 35, 362, doi:10.1029/2008GL035655.
Jakobi, J.; Huisman, J.A.; Schrön, M.; Fiedler, J.; Brogi, C.; Vereecken, H.; Bogena, H.R. Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Front. Water 2020, 2, 4079, doi:10.3389/frwa.2020.00010.
Desilets, D.; Zreda, M.; Ferré, T.P.A. Natureʹs neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 2010, 46, 2454, doi:10.1029/2009WR008726.
Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low‐Cost Soil Water Content Sensors. Sensors 2017, 17, 208, doi:10.3390/s17010208.
Delta, T. SunScan Canopy Analysis‐Canopy Analyser‐LAI‐PAR. Available online: https://www.delta‐t.co.uk/product/sunscan/(accessed on 16 December 2020).
KONICA MINOLTA Europe. Available online: https://www5.konicaminolta.eu/de/messgeraete/produkte/farbmessung/chlorophyll‐messgeraet/spad‐ 502plus/einfuehrung.html?gclid=CjwKCAiA_eb‐BRB2EiwAGBnXXssTMesBxvkJy3Qtc4bsrCFzLXrD8DU9XafeTUCX3oyCkt‐ 1tq2BPxoCjCgQAvD_BwE (accessed on 16 December 2020).
Lee, J.S.; Wen, J.H.; Ainsworth, T. L.; Chen, K.S.; Chen, A. J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sensing 2009, 47, 202‐213. doi: 10.1109/TGRS.2008.2002881.
Balenzano, A.; Mattia, F.; Satalino, G.; Davidson, M.W.J. Dense Temporal Series of C‐ and L‐band SAR Data for Soil Moisture Retrieval Over Agricultural Crops. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 439–450, doi:10.1109/JSTARS.2010.2052916.
Wegmüller, U.; Santoro, M.; Mattia, F.; Balenzano, A.; Satalino, G.; Marzahn, P.; Fischer, G.; Ludwig, R.; Floury, N. Progress in the understanding of narrow directional microwave scattering of agricultural fields. Remote Sens. Environ. 2011, 115, 2423–2433, doi:10.1016/j.rse.2011.04.026.
Fontanelli, G.; Paloscia, S.; Zribi, M.; Chahbi, A. Sensitivity analysis of X‐band SAR to wheat and barley leaf area index in the Merguellil Basin. Remote Sens. Lett. 2013, 4, 1107–1116, doi:10.1080/2150704X.2013.842285.
Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 2001, 39, 873–884, doi:10.1109/36.917914.
Santi, E.; Fontanelli, G.; Montomoli, F.; Brogioni, M.; Macelloni, G.; Paloscia, S.; Pettinato, S.; Pampaloni, P. The retrieval and monitoring of vegetation parameters from COSMO‐SkyMed images. In Proceedings of the IGARSS 2012—2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22 July–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 7031–7034, ISBN 978‐1‐4673‐1159‐5.
Morrison, K.; Wagner, W. Explaining Anomalies in SAR and Scatterometer Soil Moisture Retrievals From Dry Soils with Subsurface Scattering. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2190–2197, doi:10.1109/TGRS.2019.2954771.
Block, B. Die Zuckerrübe. In Rübensirup: Seine Herstellung, Beurteilung und Verwendung; Block, B., Ed.; Springer: Berlin/Heidelberg, Germany, 1920; pp. 10–18, ISBN 978‐3‐662‐33861‐2.
Wang, H.; Magagi, R.; Goïta, K.; Wang, K. Soil moisture retrievals using ALOS2‐ScanSAR and MODIS synergy over Tibetan Plateau. Remote Sens. Environ. 2020, 251, 112100, doi:10.1016/j.rse.2020.112100.
Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518, doi:10.1109/36.485127.
Vermunt, P.C.; Khabbazan, S.; Steele‐Dunne, S.C.; Judge, J.; Monsivais‐Huertero, A.; Guerriero, L.; Liu, P.‐W. Response of Subdaily L‐Band Backscatter to Internal and Surface Canopy Water Dynamics. IEEE Trans. Geosci. Remote Sens. 2020, 1–16, doi:10.1109/TGRS.2020.3035881.
Riedel, T.; Pathe, C.; Thiel, C.; Herold, M.; Schmullius, C. Systematic investigation on the effect of dew and interception on multifrequency and multipolarimetric radar backscatter signals. Retr. Bio‐ Geo‐Phys. Parameters SAR Data Land Appl. 2001, 475, 99–104.
Allen, C. T.; Ulaby, F. T. Characterization of the Microwave Extinction Properties of Vegetation Canopies; University of Michigan, College of Engineering, Radiation Laboratory: Ann Arbor, MI, USA, 1984.
Easterday, K.; Kislik, C.; Dawson, T.; Hogan, S.; Kelly, M. Remotely Sensed Water Limitation in Vegetation: Insights from an Experiment with Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 1853, doi:10.3390/rs11161853.