Allroggen, N., L.M.B. van Schaik, and J. Tronicke. 2015. 4D ground-penetrating radar during a plot scale dye tracer experiment. J. Appl. Geophys. 118:139–144. doi:10.1016/j.jappgeo.2015.04.016
Arcone, S.A., P.R. Peapples, and L.B. Liu. 2003. Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide. Geophysics 68:1922–1933. doi:10.1190/1.1635046
Binley, A., and K. Beven. 2003. Vadose zone flow model uncertainty as conditioned on geophysical data. Ground Water 41:119–127. doi:10.1111/j.1745-6584.2003.tb02576.x
Binley, A., G. Cassiani, R. Middleton, and P. Winship. 2002a. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imag- ing. J. Hydrol. 267:147–159. doi:10.1016/S0022-1694(02)00146-4
Binley, A., S.S. Hubbard, J.A. Huisman, A. Revil, D.A. Robinson, K. Singha, and L.D. Slater. 2015. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 51:3837–3866.
Binley, A., P. Winship, L.J. West, M. Pokar, and R. Middleton. 2002b. Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J. Hydrol. 267:160–172. doi:10.1016/S0022-1694(02)00147-6
Böniger, U., and J. Tronicke. 2010. On the potential of kinematic GPR surveying using a self-tracking total station: Evaluating system crosstalk and latency. IEEE Trans. Geosci. Remote Sens. 48:3792–3798. doi:10.1109/TGRS.2010.2048332
Bradford, J.H. 2008. Measuring water content heterogeneity using multifold GPR with reflection tomography. Vadose Zone J. 7:184–193. doi:10.2136/vzj2006.0160
Busch, S., J. van der Kruk, and H. Vereecken. 2014. Improved characterization of fine-texture soils using on-ground GPR full-waveform inversion. IEEE Trans. Geosci. Remote Sens. 52:3947–3958. doi:10.1109/TGRS.2013.2278297
Busch, S., L. Weihermüller, J.A. Huisman, C.M. Steelman, A.L. Endres, H. Vereecken, and J. van der Kruk. 2013. Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface. Water Resour. Res. 49:8480–8494. doi:10.1002/2013WR013992
Cassiani, G., C. Strobbia, and L. Gallotti. 2004. Vertical radar profiles for the characterization of deep vadose zones. Vadose Zone J. 3:1093–1105. doi:10.2136/vzj2004.1093
Dafflon, B., J. Irving, and W. Barrash. 2011. Inversion of multiple intersecting high-resolution crosshole GPR profiles for hydrological characterization at the Boise Hydrogeophysical Research Site. J. Appl. Geophys. 73:305–314. doi:10.1016/j.jappgeo.2011.02.001
Deiana, R., G. Cassiani, A. Villa, A. Bagliani, and V. Bruno. 2008. Calibration of a vadose zone model using water injection monitored by GPR and electrical resistance tomography. Vadose Zone J. 7:215–226. doi:10.2136/vzj2006.0137
Famiglietti, J.S., D.R. Ryu, A.A. Berg, M. Rodell, and T.J. Jackson. 2008. Field observations of soil moisture variability across scales. Water Resour. Res. 44:W01423. doi:10.1029/2006WR005804
Gerhards, H., U. Wollschläger, Q.H. Yu, P. Schiwek, X.C. Pan, and K. Roth. 2008. Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics 73:J15–J23. doi:10.1190/1.2943669
Gueting, N., T. Vienken, A. Klotzsche, J. van der Kruk, J. Vanderborght, J. Caers, et al. 2017. High resolution aquifer characterization using crosshole GPR full-waveform tomography: Comparison with direct-push and tracer test data. Water Resour. Res. 53:49–72. doi:10.1002/2016WR019498
Haarder, E.B., A. Binley, M.C. Looms, J. Doetsch, L. Nielsen, and K.H. Jensen. 2012. Comparing plume characteristics inferred from cross-borehole geophysical data. Vadose Zone J. 11(4). doi:10.2136/vzj2012.0031
Hinnell, A.C., T.P.A. Ferré, J.A. Vrugt, J.A. Huisman, S. Moysey, J. Rings, and M.B. Kowalsky. 2010. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water Resour. Res. 46:W00D40. doi:10.1029/2008WR007060
Huisman, J.A., S.S. Hubbard, J.D. Redman, and P.A. Annan. 2003. Measuring soil water content with ground penetrating radar: A review. Vadose Zone J. 2:476–491. doi:10.2136/vzj2003.4760
Jol, H.M., editor. 2009. Ground penetrating radar: Theory and applications. Elsevier Science, Amsterdam.
Jonard, F., M. Mahmoudzadeh, C. Roisin, L. Weihermüller, F. André, J. Minet, et al. 2013. Characterization of tillage effects on the spatial variation of soil properties using ground-penetrating radar and electromagnetic induction. Geoderma 207–208:310–322. doi:10.1016/j.geoderma.2013.05.024
Jonard, F., L. Weihermüller, M. Schwank, K.Z. Jadoon, H. Vereecken, and S. Lambot. 2015. Estimation of hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 53:3095–3109. doi:10.1109/TGRS.2014.2368831
Jonard, F., L. Weihermüller, H. Vereecken, and S. Lambot. 2012. Accounting for soil surface roughness in the inversion of ultrawideband off-ground GPR signal for soil moisture retrieval. Geophysics 77:H1–H7. doi:10.1190/geo2011-0054.1
Keskinen, J., A. Klotzsche, M.C. Looms, J. Moreau, J. van der Kruk, K. Holliger, et al. 2017. Full-waveform inversion of crosshole GPR data: Implications for porosity estimation in chalk. J. Appl. Geophys. 140:102–116. doi:10.1016/j.jappgeo.2017.01.001
Klenk, P., S. Jaumann, and K. Roth. 2015. Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar. Hydrol. Earth Syst. Sci. 19:1125–1139. doi:10.5194/hess-19-1125-2015
Klotzsche, A., J. van der Kruk, J. Bradford, and H. Vereecken. 2014. Detection and identification of waveguides with limited lateral extent using an amplitude analysis approach and crosshole GPR full-waveform inversion: Synthetic and experimental data. Water Resour. Res. 50:6966–6985. doi:10.1002/2013WR015177
Klotzsche, A., J. van der Kruk, N. Linde, J. Doetsch, and H. Vereecken. 2013. 3-D characterization of high-permeability zones in a gravel aquifer using 2-D crosshole GPR full-waveform inversion and waveguide detection. Geophys. J. Int. 195:932–944. doi:10.1093/gji/ggt275
Kowalsky, M.B., S. Finsterle, and Y. Rubin. 2004. Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv. Water Resour. 27:583–599. doi:10.1016/j.advwatres.2004.03.003
Lambot, S., and F. André. 2014. Full-wave modeling of near-field radar data for planar layered media reconstruction. IEEE Trans. Geosci. Remote Sens. 52:2295–2303. doi:10.1109/TGRS.2013.2259243
Lambot, S., E. Slob, J. Rhebergen, O. Lopera, K.Z. Jadoon, and H. Vereecken. 2009. Remote estimation of the hydraulic properties of a sand using full-waveform integrated hydrogeophysical inversion of time-lapse, off-ground GPR data. Vadose Zone J. 8:743–754. doi:10.2136/vzj2008.0058
Lambot, S., E.C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster. 2004. Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 42:2555–2568. doi:10.1109/TGRS.2004.834800
Lassen, R.N., T.O. Sonnenborg, K.H. Jensen, and M.C. Looms. 2015. Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar. Int. J. Greenhouse Gas Control 37:287–298. doi:10.1016/j.ijggc.2015.03.030
Linde, N., A. Binley, A. Tryggvason, L.B. Pedersen, and A. Revil. 2006. Improved hydro-geophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar travel-time data. Water Resour. Res. 42:W12404. doi:10.1029/2006WR005131
Looms, M.C., A. Binley, K.H. Jensen, L. Nielsen, and T.M. Hansen. 2008. Identifying unsaturated hydraulic parameters using an integrated data fusion approach on cross-borehole geophysical data. Vadose Zone J. 7:238–248. doi:10.2136/vzj2007.0087
Looms, M.C., A. Klotzsche, J. van der Kruk, T. Hauerberg Larsen, A. Edsen, N. Tuxen, et al. 2018. Mapping sand layers in clayey till using crosshole ground-penetrating radar. Geophysics 83:A21–A26. doi:10.1190/geo2017-0297.1
Mangel, A., S.M. Moysey, and J. van der Kruk. 2015. Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study. J. Hydrol. 525:496–505. doi:10.1016/j.jhydrol.2015.04.011
Mangel, A., S.M.J. Moysey, and J. van der Kruk. 2017. Resolving infiltration-induced water content profiles by inversion of dispersive ground-penetrating radar data. Vadose Zone J. 16(10). doi:10.2136/vzj2017.02.0037
Meles, G.A., J. van der Kruk, S.A. Greenhalgh, J.R. Ernst, H. Maurer, and A.G. Green. 2010. A new vector waveform inversion algorithm for simultaneous updating of conductivity and permittivity parameters from combination crosshole/borehole-to-surface GPR data. IEEE Trans. Geosci. Remote Sens. 48:3391–3407. doi:10.1109/TGRS.2010.2046670
Minet, J., P. Bogaert, M. Vanclooster, and S. Lambot. 2012. Validation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping. J. Hydrol. 424–425:112–123. doi:10.1016/j.jhydrol.2011.12.034
Müller, K., J. Vanderborght, A. Englert, A. Kemna, J.A. Huisman, J. Rings, and H. Vereecken. 2010. Imaging and characterization of solute transport during two tracer tests in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resour. Res. 46:W03502. doi:10.1029/2008WR007595
Pan, X., U. Wollschläger, H. Gerhards, and K. Roth. 2012b. Optimization of multi-channel ground-penetrating radar for quantifying field-scale soil water dynamics. J. Appl. Geophys. 82:101–109. doi:10.1016/j.jappgeo.2012.02.007
Pan, X., J. Zhang, P. Huang, and K. Roth. 2012a. Estimating field-scale soil water dynamics at a heterogeneous site using multi-channel GPR. Hydrol. Earth Syst. Sci. 16:4361–4372. doi:10.5194/hess-16-4361-2012
Paz, C., F.J. Alcala, J.M. Carvalho, and L. Ribeiro. 2017. Current uses of ground penetrating radar in groundwater-dependent ecosystems research. Sci. Total Environ. 595:868–885. doi:10.1016/j.scitotenv.2017.03.210
Scholer, M., J. Irving, M.C. Looms, L. Nielsen, and K. Holliger. 2012. Bayesian Markov-chain-Monte-Carlo inversion of time-lapse crosshole GPR data to characterize the vadose zone at the Arrenaes site, Denmark. Vadose Zone J. 11(4). doi:10.2136/vzj2011.0153
Serbin, G., and D. Or. 2005. Ground-penetrating radar measurement of crop and surface water content dynamics. Remote Sens. Environ. 96:119–134. doi:10.1016/j.rse.2005.01.018
Simmer, C., I. Thiele-Eich, M. Masbou, W. Amelung, H. Bogena, S. Crewell, et al. 2015. Monitoring and modeling the terrestrial system from pores to catchments. Bull. Am. Meteorol. Soc. 96:1765–1787. doi:10.1175/BAMS-D-13-00134.1
Steelman, C.M., and A.L. Endres. 2011. Comparison of petrophysical relationships for soil moisture estimation using GPR ground waves. Vadose Zone J. 10:270–285. doi:10.2136/vzj2010.0040
Steelman, C.M., A.L. Endres, and J.P. Jones. 2012. High-resolution ground-penetrating radar monitoring of soil moisture dynamics: Field results, interpretation, and comparison with unsaturated flow model. Water Resour. Res. 48:W09538. doi:10.1029/2011WR011414
Steelman, C.M., D.R. Klazinga, A.G. Cahill, A.L. Endres, and B.L. Parker. 2017. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT. J. Contam. Hydrol. 205:12–24. doi:10.1016/j.jconhyd.2017.08.011
Strobach, E., B.D. Harris, J.C. Dupuis, and A.W. Kepic. 2014. Time-lapse borehole radar for monitoring rainfall infiltration through podosol horizons in a sandy vadose zone. Water Resour. Res. 50:2140–2163. doi:10.1002/2013WR014331
Topp, G.C., J.L. Davis, and A.P. Annan. 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 16:574–582. doi:10.1029/WR016i003p00574
Trinks, I., D. Wachsmuth, and H. Stümpel. 2001. Monitoring water flow in the unsaturated zone using georadar. First Break 19:679–684. doi:10.1046/j.1365-2397.2001.00228.x
Tronicke, J., and G. Hamann. 2014. Vertical radar profiling: Combined analysis of traveltimes, amplitudes, and reflections. Geophysics 79:H23–H35. doi:10.1190/geo2013-0428.1
Truss, S., M. Grasmueck, S. Vega, and D.A. Viggiano. 2007. Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar. Water Resour. Res. 43:W03405. doi:10.1029/2005WR004395
Tsoflias, G.P., and M.W. Becker. 2008. Ground-penetrating-radar response to fracture-fluid salinity: Why lower frequencies are favorable for resolving salinity changes. Geophysics 73:J25–J30. doi:10.1190/1.2957893
van der Kruk, J., R.W. Jacob, and H. Vereecken. 2010. Properties of precipitation induced multi-layer surface waveguides derived from inversion of dispersive TE and TM GPR Data. Geophysics 75:WA263–WA273. doi:10.1190/1.3467444
Vereecken, H., A. Schnepf, J.W. Hopmans, M. Javaux, D. Or, T. Roose, et al. 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J. 15(5). doi:10.2136/vzj2015.09.0131
Wollschläger, U., H. Gerhards, Q. Yu, and K. Roth. 2010. Multi-channel ground-penetrating radar to explore spatial variations in thaw depth and moisture content in the active layer of a permafrost site. Cryosphere 4:269–283. doi:10.5194/tc-4-269-2010