Efficiency of end effect probes for in-situ permittivity measurements in the 0.5–6 GHz frequency range and their application for organic soil horizons study
Demontoux, F.; IMS Laboratory, University of Bordeaux, 16 Avenue Pey Berland, Pessac, 33607, France
Razafindratsima, S.; I2M Laboratory, GCE Department, University of Bordeaux, Bordeaux, France
Bircher, S.; Centre d'Etudes Spatiales de la Biosphère, Toulouse, France
Ruffié, G.; IMS Laboratory, University of Bordeaux, 16 Avenue Pey Berland, Pessac, 33607, France
Bonnaudin, F.; IMS Laboratory, University of Bordeaux, 16 Avenue Pey Berland, Pessac, 33607, France
Jonard, François ; Université de Liège - ULiège > Département de géographie > Systèmes d'information géographiques
Wigneron, J.-P.; INRA, UMR 1391 ISPA, Villenave d'Ornon, F-33140, France
Sbartaï, M.; I2M Laboratory, GCE Department, University of Bordeaux, Bordeaux, France
Kerr, Y.; Centre d'Etudes Spatiales de la Biosphère, Toulouse, France
Language :
English
Title :
Efficiency of end effect probes for in-situ permittivity measurements in the 0.5–6 GHz frequency range and their application for organic soil horizons study
[1] Boudouris, Validité de la méthode de perturbation appliquée aux cavités résonnantes pour la mesure de la perméabilité et de la permittivité des petits échantillons. Annales Télécommunications 19 (1964), 63–80.
[2] F. Demontoux, Contribution à l'amélioration des mesures de permittivité à 2450MHZ et au développement d'un applicateur micro ondes dédié à la flash pasteurisation à l'aide de modélisations électromagnétique et thermique, University Bordeaux PhD (1999).
[3] Weir, W.B., Automatic measurement of complex dielctric constant and permeability at microwave frequency. Proceedings of IEEE 62 (1974), 33–36 (no%11).
[4] Demontoux, F., Le Crom, B., Ruffie, G., Wigneron, J., Grant et Mironov, J.V., Electromagnetic characterization of soil-litter media: application to the simulation of the microwave emissivity of the ground surface in forests. Eur. Phys. J. Appl. Phys. 44:%13 (2008), 303–315.
[6] Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., et al. Observations, microwave dielectric behavior of wet soil-part I: empirical models and experimental observations. IEEE Trans. Geosci. Remmote Sens. 23:%11 (1985), 25–34.
[7] Mironov, V., Kerr, Y., Wigneron, J.P., Kosolapova, L., Demontoux, F., Temperature- and texture-dependent dielectric model for moist soils at 1.4 GHz. IEEE Geosci. Remote Sens. Lett. 10:% 13 (2013), 419–423.
[8] Rao, B., Bhat, A., Singh, D., Application of impedance spectroscopy for modeling flow of AC in soils. Geomach. Geoeng. Int. J. 2:%13 (2007), 197–206.
[9] Bhat, A., Rao, B., Singh, D., A generalized relatinship for estimating dielectric constant of soils. J. ASTM Int., %1 sur%2, 2007, 10.1520/JAI100635 (p. 12).
[10] Rohini, K., Singh, D., A methodology for determination of Electrical Propertiees of Soils. J. Testing Eval. ASTM 32:%11 (2004), 64–70.
[11] Decagon Devices Inc,ECH20 Soil Moisture Sensor, Operator's manual for model 5TE. Decagon Devices Inc., 2365 NE Hopkins Court, Pullman, WA 99163, USA, (2014).
[12] Delta T devices Ltd, ThetaProbe Soil Moisture sensor Type ML2x user Manual ML2x-UM-1.21. Delta-T Devices Ltd. 128 Low Road, Burwell, Cambridge CB5 0EJ, GB, 1999.
[13] Hanumantha, Rao, B., Sridhar, V., Rakesh, R., Sing, D., Narayan, P., Wattal, P., Lysimetric Studies fo modelling radioactive contaminant transport in soils. Int. J. Environ. Waste Manage. IJEWM 12:%13 (2013), 318–339.
[14] Jones, S., Wraith, J., Or, D., Time domain reflectometry measurement principles and applications. Hydro Process 16 (2002), 141–153.
[15] Bircher, S., Razafindratsima, S., Demontoux, F., Andreasen, M., Vuollet, J., Rautiainen, K., Jonard, F., weihermüler, L., Richaume, P., Mialon, A., Wigneron et Kerr, J.Y., Soil Moisture and Dielectric constant measurements of organic soils in the higher northern latitudes in support of the SMOS mission. Transaction of the Fourth International Smposium on Soil Water Measurement Using Capacitance, Impedance and TDT, Montreal Canada July 16–18, 2014.
[16] ESA, ESA website: http://www.esa.int/esaLP/LPsmos.html, [En ligne].
[17] Kerr, Y., Waldteufel, P., et al. Soil moisture retrieval from space: the Soil Moisture and Ocean. IEEE Trans. Geosci. Remote Sens. 39:%18 (2001), 1729–1735.
[19] Stuchly, M., Stuchly, S., Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies. IEEE Trans. Instrum. Meas. 29 (1980), 176–183.
[20] Jensen, K., Illangaskare, T., HOBE: a hydrological observatory. Vadose Zone J. 10 (2011), 1–7.
[21] A. Zanella, B. Jabiol, J. Ponge, G. Sartori, R. De Wall, B. Van Delft, U. Graefe, N. Cools, K. Katzensteiner, H. Hager, M. Englisch, A. Brethes, G. Broll, J. Gobat, J. Brun, G. Milbert, E. Kolb, U. Wolf, L. Frizzera, P. Galvan, R. Kolli, R. Baritz, R. Kemmers, A. Vacca, G. Serra, D. Banas, A. Garlato, S. Chersich, E. Klimo, R. Langohr, European Humus Forms Reference Base, http://hal.archives-ouvertes.fr/hal-00541496/ (2011).
[22] O'Kelly, B., Accurate determination of moisture content of organic soils using the oven drying method. Drying Technol. 22:%17 (2004), 1767–1776.
[23] Demontoux, F., Le Crom, B., Ruffie, G., wigneron, J., Grant, J., Mironov, V., Electromagnetic characterization of soil-litter media – application to the simulation of the microwave emissivity of the ground surface in forests. Eur. Phys. J. Appl. Phys. 44:%13 (2008), 303–315.
[24] Hippel, V., Dielectric Materials and Applications. 1960, The technology press of MIT.
[25] Sbartai, Z., Maï, C., Bos, F., Razafindratsima, S., Demontoux, F., Non destructive evaluation of timber structures using GPR technique. 15th International Conference on Ground Penetratin Radar (GPR 2014), Brussels, Belgium, June 30 July 4 2014, 2014.
[26] Matthews, S., Goodier, A., Massey, S., Permittivity measurements and analytical dielectric modeling of plain structural concrete. Proceedings of the Seventh International Conference on Ground Penetrating Radar, Laurence, Kansas USA, 1998, 363–368.