[en] Numerous bibliographic reviews related to the use of AI for the behavioral detection of farm animals exist, but they only focus on a particular type of animal. We believe that some techniques were used for some animals that could also be used for other types of animals. The application and comparison of these techniques between animal species are rarely done. In this paper, we propose a review of machine learning approaches used for the detection of farm animals’ behaviors such as lameness, grazing, rumination, and so on. The originality of this paper is matched classification in the midst of sensors and algorithms used for each animal category. First, we highlight the most implemented approaches for different categories of animals (cows, sheep, goats, pigs, horses, and chickens) to inspire researchers interested to conduct investigation and employ the methods we have evaluated and the results we have obtained in this study. Second, we describe the current trends in terms of technological development and new paradigms that will impact the AI research. Finally, we critically analyze what is done and we draw new pathways of research to
advance our understanding of animal’s behaviors.
Disciplines :
Computer science
Author, co-author :
Debauche, Olivier ; Université de Liège - ULiège > TERRA Research Centre
Elmoulat, Meryem
Mahmoudi, Saïd
Bindelle, Jérôme ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Lebeau, Frédéric ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Language :
English
Title :
Farm Animals’ Behaviors and Welfare Analysis with AI Algorithms: A Review
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Neethirajan, S. (2020). The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 29: 100367. https://doi.org/10.1016/j.sbsr.2020.100367
Taneja, M., Byabazaire, J., Joladia, N., Davy, A., Olariu, C., Malone, P. (2020). Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle. Computers and Electronics in Agriculture, 171: 105286. https://doi.org/10.1016/j.compag.2020.105286
Borgonovo, F., Ferrante, V., Grilli, G., Pascuzzo, R., Vantini, S., Guarino, M. (2020). A data-driven prediction method for an early warning of coccidiosis by intensive livestock systems: A preliminary study. Animals, 10(4): 747. https://doi.org/10.3390/ani10040747
Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18: 2674. https://doi.org/10.3390/s18082674
García, R., Aguilar, J., Toro, M., Pinto, A., Rodríguez, P. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 179: 105826. https://doi.org/10.1016/j.compag.2020.105826
Debauche, O., Mahmoudi, S., Manneback, P., Bindelle, J., Lebeau, F. (2020). A new collaborative platform for research in smart farming. Procedia Computer Science, 177: 450-455. https://doi.org/10.1016/j.procs.2020.10.061
Dutta, R., Smith, D., Rawnsley, R., Bishop-Hurley, G., Hills, J., Timms, G., Henry, D. (2015). Dynamic cattle behavioural classification using supervised ensemble classifiers. Computers and Electronics in Agriculture, 111: 18-28. https://doi.org/10.1016/j.compag.2014.12.002
Pegorini, V., Zen Karam, L., Pitta, C.S.R., Cardoso, R., Da Silva, J.C.C., Kalinowski, H.J., Ribeiro, R., Bertotti, F.L., Assmann, T.S. (2015). In vivo pattern classification of ingestive behavior in ruminants using FBG sensors and machine learning. Sensors, 15(11): 28456-28471. https://doi.org/10.3390/s151128456
Matthews, S.G., Miller, A.L., Plötz, T., Kyriazakis, I. (2017). Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Scientific Reports, 7(1): 7-12. https://doi.org/10.1038/s41598-017-17451-6
Lush, L., Wilson, R.P., Holton, M.D., Hopkins, P., Marsden, K.A., Chadwick, D.R., King, A.J. (2018). Classification of sheep urination events using accelerometers to aid improved measurements of livestock contributions to nitrous oxide emissions. Computers and Electronics in Agriculture, 150: 170-177. https://doi.org/10.1016/j.compag.2018.04.018
Vázquez-Diosdado, J.A., Paul, V., Ellis, K.A., Coates, D., Loomba, R., Kaler, J. (2019). A combined offline and online algorithm for real-time and long-term classification of sheep behaviour: Novel approach for precision livestock farming. Sensors, 19(14): 3201. https://doi.org/10.3390/s19143201
Andriamandroso, A.L.H., Lebeau, F., Beckers, Y., Froidmond, E., Dufrasne, I., Heinesch, B., Dumortier, P., Blanchy, G., Blaise, Y., Bindelle, J. (2017). Development of an open-source algorithm based on inertial measurement unit (IMU) of a smartphone to detect cattle grass intake and rumination behaviors. Computers and Electronics in Agriculture, 139: 126-137. https://doi.org/10.1016/j.compag.2017.05.020
Rahman, A., Smith, D.V., Little, B., Ingham, A.B., Greenwood, P.L, Bischop-Hurley, G.J. (2018). Cattle behaviour classification from collar, halter, and ear tag sensors. Information Processing in Agriculture, 5(1): 124-133. https://doi.org/10.1016/j.inpa.2017.10.001
Barker, Z.E., Vázquez Diosdado, J.A., Codling E.A., Bell, N.J., Hodges, H.R., Croft, D.P., Amory, J.R. (2018). Use of novel sensors combining local positioning and acceleration to measure feeding behavior differences associated with lameness in dairy cattle. J. Dairy Sci., 101: 6310-6321. https://doi.org/10.3168/jds.2016-12172
Williams, M.L., Mac Parthaláin, N., Brewer, P., James, W.P.J., Rose, M.T. (2016). A novel behavioral model of the pasture-based dairy cow from GPS data using data mining and machine learning techniques. Journal of Dairy Science, 99(3): 2063-2075. https://doi.org/10.3168/jds.2015-10254
Achour, B., Belkadi, M., Aoudjit, R., Laghrouche, M. (2019). Unsupervised automated monitoring of dairy cows' behavior based on Inertial Measurement Unit attached to their back. Computers and Electronics in Agriculture, 167: 105068. https://doi.org/10.1016/j.compag.2019.105068
Tamura, T., Okubo, Y., Deguchi, Y., Koshikawa, S., Takahashi, M., Chida, Y., Okada, K. (2019). Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers. Animal Science Journal, 90(4): 589-596. https://doi.org/10.1111/asj.13184
Riaboff, L., Poggi, S., Madouasse, A., Couvreur, S., Aubin, S., Bédère, N., Goumand, E., Chauvin, A., Plantier, G. (2020). Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. Computers and Electronics in Agriculture, 169: 105179. https://doi.org/10.1016/j.compag.2019.105179
Khanh, P.C.P., Tran, D.T., Duong, V.T., Thinh, N.H., Tran, D.N. (2020). The new design of cows' behavior classifier based on acceleration data and proposed feature set. Mathematical Biosciences and Engineering, 17(4): 2760-2780. https://doi.org/10.3934/mbe.2020151
Hamilton, A., Davison, C., Tachtatzis, C., Andonovic, I., Michie, C., Fergusson, H.J., Somerville, L., Jonsson, N.N. (2019). Identification of the rumination in cattle using support vector machines with motion-sensitive bolus sensors. Sensors, 19(5): 1165. https://doi.org/10.3390/s19051165
Rodriguez-Baena, D.S., Gomez-Vela, F.A., García-Torres, M., Divina, F., Barranco, C.D., Daz-Diaz, N., Jimenez, M., Montalvo, G. (2020). Identifying livestock behavior patterns based on accelerometer dataset. Journal of Computational Science, 41: 101076. https://doi.org/10.1016/j.jocs.2020.101076
Brennam, J., Johnson, P., Olson, K. (2021). Classifying season long livestock grazing behavior with the use of a low-cost GPS and accelerometer. Computers and Electronics in Agriculture, 181: 105957. https://doi.org/10.1016/j.compag.2020.105957
Vanrell, S.R., Chelotti, J.O., Galli, J.R., Utsumi, S.A., Giovanini, L.L., Rufiner, H.L., Milone, D.H. (2018). A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle. Computers and Electronics in Agriculture, 151: 392-402. https://doi.org/10.1016/j.compag.2018.06.021
Ayadi, S., Said, A.B., Jabbar, R., Aloulou, C., Chabbouh, A., Achballah, A.B. (2020). Dairy cow rumination detection: A deep learning approach. International Workshop on Distributed Computing for Emerging Smart Networks, pp. 123-139. https://doi.org/10.1007/978-3-030-65810-6_7
Shen, W., Zhang, A., Zhang, Y., Wei, X., Sun, J. (2020). Rumination recognition method of dairy cows based on the change of noseband pressure. Information Processing in Agriculture, 7(4): 479-490. https://doi.org/10.1016/j.inpa.2020.01.005
Chelotti, J.O., Vanrell, S.R., Galli, J.R., Giovanni, L.L., Rufiner, H.L. (2018). A pattern recognition approach for detection and classifying jaw movements in grazing cattle. Computers and Electronics in Agriculture, 145: 83-91. https://doi.org/10.1016/j.compag.2017.12.013
Shen, W., Cheng, F., Zhang, Y., Wei, X., Fu, Q., Zhang, Y. (2020). Automatic recognition of ingestive-related behaviors of dairy cows based on triaxial acceleration. Information Processing in Agriculture, 7(3): 427-443. https://doi.org/10.1016/j.inpa.2019.10.004
Wang, J., Bell, M., Liu, X., Liu, G. (2020). Machine-learning techniques can enhance dairy cow estrus detection using location and acceleration data. Animals, 10(7): 1160. https://doi.org/10.3390/ani10071160
Keceli, A.S., Catal, C., Kaya, A., Tekinerdogan, B. (2020). Development of a recurrent neural networks-based calving prediction model using activity and behavioral data. Computers and Electronics in Agriculture, 170: 105285. https://doi.org/10.1016/j.compag.2020.105285
Shahriar, M.S., Smith, D., Rahman, A., Freeman, M., Hills, J., Rawnsley, R., Henry, D., Bishop-Hurley, G. (2016). Detecting heat events in dairy cows using accelerometers and unsupervised learning. Computers and Electronics in Agriculture, 128: 20-26. https://doi.org/10.1016/j.compag.2016.08.009
Higaki, S., Miura, R., Suda, T., Andersson, L.M., Okada, H., Zhang, Y., Itoh, T., Miwakeichi, F., Yoshioka, K. (2019). Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattle. Theriogenology, 123: 90-99. https://doi.org/10.1016/j.theriogenology.2018.09
Shigeta, M., Ike, R., Takemura, H., Owhada, H. (2018). Automatic measurement and determination of body condition score of cows based on 3D images using CNN. Journal of Robotics and Mechatronics, 30(2): 206-213. https://doi.org/10.20965/jrm.2018.p0206
Rodríguez Alvarez, J., Arroqui, M., Mangudo, P., Toloza, J., Jatip, D., Rodriguez, J.M., Teyseyre, A., Sanz, C., Zunino, A., Machado, C., Mateos, C. (2019). Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques. Agronomy, 9(2): 90. https://doi.org/10.3390/agronomy9020090
Davison, C., Michie, C., Hamilton, A., Tachtatzis, C., Andonovic, I., Gilroy, M. (2020). Detecting heat stress in dairy cattle using neck-mounted activity collars. Agriculture, 10(6): 210. https://doi.org/10.3390/agriculture10060210
Alsaaod, M., Fadul, M., Steiner, A. (2019). Automatic lameness detection in cattle. The Veterinary Journal, 246: 35-44. https://doi.org/10.1016/j.tvjl.2019.01.005
Barwick, J., Lamb, D.W., Dobos, R., Welch, M., Trotter, M. (2018). Categorising sheep activity using tri-axial accelerometer. Computers and Electronics in Agriculture, 145: 289-297. https://doi.org/10.1016/j.compag.2018.01.007
Alvarenga, F.A.P., Borges, L., Oddy, V.H., Dobos, R.C. (2020). Discrimination of biting and chewing behaviour in sheep using a tri-axial accelerometer. Computers and Electronics in Agriculture, 168: 105051. https://doi.org/10.1016/j.compag.2019.105051
Fogarty, E.S., Swain, D.L., Cronin, G.M., Moraes, L.E., Trotter, M. (2020). Behaviour classification of extensively grazed sheep using machine learning. Computers and Electronics in Agriculture, 169: 105175. https://doi.org/10.1016/j.compag.2019.105175
Mansbridge, N., Mitsch, J., Bollard, N., Ellis, K., Miguel-Pacheco, G.G., Dottorini, T., Kaler, J. (2018). Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep. Sensors, 18: 3552. https://doi.org/10.3390/s18103532
Kleanthous, N., Hussain, A., Mason, A., Sneddon, J., Shaw, A., Fergus, P., Chalmers, C., Al-Jumeily, D. (2018) Machine learning techniques for classification of livestock behavior. Machine learning techniques for classification of livestock behavior. International Conference on Neural Information Processing, pp. 304-315. https://doi.org/10.1007/978-3-030-04212-7_26
Kuźnicka, E., Gburzyński, P. (2017). Automatic detection of suckling events in lamb through accelerometer data classification. Computers and Electronics in Agriculture, 138: 137-147. https://doi.org/10.1016/j.compag.2017.04.009
Barwick, J., Lamb, D., Dobos, R., Schneider, D., Welch, M., Trotter, M. (2018). Predicting lameness in sheep activity using tri-axial acceleration signals. Animals, 8(1): 12. https://doi.org/10.3390/ani8010012
Noor, A., Zhao, Y., Koubâa, A., Wu, L., Khan, R., Abdalla, F.Y.O. (2020). Automated sheep facial expression classification using deep transfer learning. Computers and Electronics in Agriculture, 175: 105528. https://doi.org/10.1016/j.compag.2020.105528
Fuentes, S., Gonzalez Viejo, C., Chauhan, S.S., Joy, A., Tongson, E., Dunshea, F.R. (2020). Non-invasive sheep biometrics obtained by computer vision algorithms and machine learning modeling using integrated visible/infrared thermal camera. Sensors, 20(21): 6334. https://doi.org/10.3390/s20216334
Rao, Y., Jiang, M., Wang, W., Zhang, W., Wang, R. (2020). On-farm welfare monitoring system for goats based on Internet of Things and machine learning. International Journal of Distributed Sensors Networks, 16(7). https://doi.org/10.1177/1550147720944030
Sakai, K., Oishi, K., Miwa, M., Kumagai, H., Hirooka, H. (2019). Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Computers and Electronics in Agriculture, 166: 105027. https://doi.org/10.1016/j.compag.2019.105027
Jiang, M., Rao, Y., Zhang, J., Shen, Y. (2020). Automatic behavior recognition of grouped-housed goats using deep learning. Computers and Electronics in Agriculture, 177: 105706. https://doi.org/10.1016/j.compag.2020.105706
Bocaj, E., Uzunidis, D., Kasnesis, P., Patrikakis, C.Z. (2020). On the benefits of deep convolutional neural networks on animal activity recognition. 2020 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, pp. 83-88. https://doi.org/10.1109/SST49455.2020.9263702
Wang, D., Tang, J., Zhu, W., Xin, J., He, D. (2018). Dairy goat detection based on Faster R-CNN from surveillance video. Computers and Electronics in Agriculture, 154: 443-449. https://doi.org/10.1016/j.compag.2018.09.030
Zhang, K., Li, D., Huang, J., Chen, Y. (2020). Automated video behavior recognition of pigs using two-stream convolutional networks. Sensors, 20(4): 1085. https://doi.org/10.3390/s20041085
Lin, D., Chen, Y., Zhang, K., Li, Z. (2019). Mounting behaviour recognition for pigs based on deep learning. Sensors, 19(22): 4924. https://doi.org/10.3390/s19224924
Li, D., Zhang, K., Li, Z., Chen, Y. (2020). A spatiotemporal convolutional network for multi-behavior recognition of pigs. Sensors, 20(8): 2361. https://doi.org/10.3390/s20082381
Chen, C., Zhu, W., Steibel, J., Siegford, J., Han, J., Norton, T. (2020). Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosystems Engineering, 196: 1-14. https://doi.org/10.1016/j.biosystemseng.2020.05.010
Abozar, N., Sturnm, B., Edwards, S., Jeppsson, K.H., Olsson, A.C., Müller, S., Hensel, O. (2019). Deep learning and machine vision approaches for posture detection of individual pigs. Sensors, 19(17): 3738. https://doi.org/10.3390/s19173738
Yang, Q., Xiao, D., Lin, S. (2018). Feeding behavior recognition for group-housed pigs with the Faster R-CNN. Computers and Electronics in Agriculture, 155: 453-460. https://doi.org/10.1016/j.compag.2018.11.002
Chen, C., Zhu, W., Stebel, J., Siegford, J., Wurtz, K., Han, J., Norton, T. (2020). Recognition of aggressive episodes of pigs based on convolutional neural network and long-short term memory. Computers and Electronics in Agriculture, 169: 105166. https://doi.org/10.1016/j.compag.2019.105166
Alameer, A., Kyrizakis, I., Dalton, H.A., Miller, A., Bacardit, J. (2020). Automatic recognition of feeding and foraging behaviour in pigs using deep learning. Biosystems Engineering, 197: 91-104. https://doi.org/10.1016/j.biosystemseng.2020.06.013
Nasirahmadi, A., Sturm, B., Olson, A.C., Jeppson K.H., Müller, S., Edwards, S., Hensel, O. (2019). Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine. Computers and Electronics in Agriculture, 156: 475-481. https://doi.org/10.1016/j.compag.2018.12.009
Riekert, M., Klein, A., Adrion, Hoffman, C., Gallmann, E. (2020). Automatically detecting pig position and posture by 2D camera imaging and deep learning. Computers and Electronics in Agriculture, 174: 105391. https://doi.org/10.1016/j.compag.2020.105391
Arulmozhi, E., Basak, J.K., Sihalath, T., Park, J., Kim, H.T., Moon, B.E. (2021). Machine learning-based microclimate model for indoor air temperature and relative humidity prediction in a swine building. Animals, 11(1): 222. https://doi.org/10.3390/ani11010222
Eerdekens, A., Deruyck, M., Fontaine, J., Martens, L., De Poorter, E., Wout, J. (2020). Automatic equine activity detection by convolutional neural networks using accelerometer data. Computers and Electronics in Agriculture, 168: 105139. https://doi.org/10.1016/j.compag.2019.105139
Nunes, L., Ampatzidis, Y., Costa, L., Wallau, M. (2021). Horse foraging behavior detection using sound recognition techniques and artificial intelligence. Computers and Electronics in Agriculture, 183: 106080. https://doi.org/10.1016/j.compag.2021.106080
Norton, T., Piette, D., Exadakylos, V., Berckmans, D.(2018). Automated real-time stress monitoring of policehorses using wearable technology. Applied AnimalBehaviour Science, 198: 67-74.https://doi.org/10.1016/j.applanim.2017.09.009
Li, G., Hui, X., Chen, Z., Chesser, G.D., Zaho, Y. (2021).Development and evaluation of a method to detectbroilers continuously walking around feeder as anindication of restricted feeding behaviors. Computersand Electronics in Agriculture, 181: 105982.https://doi.org/10.1016/j.compag.2020.105982
de Alencar Nääs, I., da Silva Lima, N.D., Gonçalves, R.F., de Lima, L.A., Ungaro, H., Abe, J.M. (2020).Lameness prediction in broiler chicken using a machinelearning technique. Information Processing inAgriculture. https://doi.org/10.1016/j.inpa.2020.10.003
Xiao, L., Ding, K., Gao, Y., Rao, X. (2019). Behavior-induced health condition monitoring of caged chickensusing binocular vision. Computers and Electronics inAgriculture, 156: 254-262.https://doi.org/10.1016/j.compag.2018.11.022
Debauche, O., Mahmoudi, S., Mahmoudi, S.A., Manneback, P., Bindelle, J., Lebeau, F. (2020). Edgecomputing and artificial intelligence for real-time poultrymonitoring. Procedia Computer Science, 175: 534-541.https://doi.org/10.1016/j.procs.2020.07.076
Debauche, O., Mahmoudi, S., Mahmoudi, S.A., Manneback, P., Lebeau, F. (2020). A new edgearchitecture for AI-IoT services deployment. ProcediaComputer Science, 175: 10-19.https://doi.org/10.1016/j.procs.2020.07.006
Wang, X., Han Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X. (2020). Edge AI Convergence of EdgeComputing and Artificial Intelligence. Springer.https://doi.org/10.1007/978-981-15-6186-3
Barbedo, J.G.A., Koenigkan, L.V., Santos, T.T., Santos, P.M. (2019). A study on the detection of Catte in UAVimages using deep learning. Sensors, 19(24): 5436.https://doi.org/10.3390/s19245436
Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Sun, Z., Li, C. (2020). Livestock classification and countingin quadcopter aerial images using Mask R-CNN.International Journal of Remote Sensing, 41(21): 8121-8142. https://doi.org/10.1080/01431161.2020.1734245
Marini, D., lewellyn, R., Belson, S., Lee, C. (2018).Controlling within-field sheep movement using virtualfencing. Animals, 8(3): 31.https://doi.org/10.3390/ani8030031
Lomax, S., Colusso, P., Clark, C.E.F. (2019). Does virtuafencing work for grazing dairy cattle? Animals, 9(7): 429.https://doi.org/10.3390/ani9070429
Kilgour, R.J. (2012). In pursuit of "normal": A review ofthe behavior of cattle at pastur. Applied AnimalBehaviour Science, 138(1-2): 1-11.https://doi.org/10.1016/j.applanim.2011.12.002
Debauche, O., Trani, J.P., Mahmoudi, S., Manneback, P., Bindelle, J., Mahmoudi, S.A., Guttadauria, A., Lebeau, F.(2021). Data management and internet of things: Amethodological review in smart farming. Internet ofThings, 14: 100378.https://doi.org/10.1016/j.iot.2021.100378
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.