Article (Scientific journals)
Towards Landslides Early Warning System With Fog - Edge Computing And Artificial Intelligence
Elmoulat, Meryem; Debauche, Olivier; Mahmoudi, Saïd et al.
2021In International Journal of Ubiquitous Systems and Pervasive Networks, 15 (2), p. 11-17
Peer Reviewed verified by ORBi
 

Files


Full Text
juspn-v15-i2-pp-11-17(3).pdf
Publisher postprint (522.54 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Landslides Susceptibility; IoT; Artificial Intelligence; Early Warning System; Landslides Monitoring; Edge AI; Edge IoT
Abstract :
[en] Landslides are phenomena widely present around the world responsible each year for numerous loss of life and extensive property damage. Researchers have developed various methodologies to identify area of high susceptibility of landslide. However, these methodology can't predict when landslides are going to take place. Wireless Sensors Network, Internet of Thins and Artificial Intelligence offer the possibility to monitor in real-time parameters causing the triggering of rapid landslides. In this paper, we pave the way to a real-time monitoring of landslides in order to precociously alert in danger population by means of a warning system.
Disciplines :
Computer science
Author, co-author :
Elmoulat, Meryem
Debauche, Olivier  ;  Université de Liège - ULiège > TERRA Research Centre
Mahmoudi, Saïd
Mahmoudi, Sidi Ahmed
Guttadauria, Adriano
Manneback, Pierre
Lebeau, Frédéric  ;  Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Language :
English
Title :
Towards Landslides Early Warning System With Fog - Edge Computing And Artificial Intelligence
Publication date :
15 December 2021
Journal title :
International Journal of Ubiquitous Systems and Pervasive Networks
ISSN :
1923-7324
eISSN :
1923-7332
Publisher :
International Association for Sharing Knowledge and Sustainability, Port Williams, Canada
Volume :
15
Issue :
2
Pages :
11-17
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 13 September 2021

Statistics


Number of views
388 (6 by ULiège)
Number of downloads
238 (4 by ULiège)

OpenCitations
 
4
OpenAlex citations
 
10

Bibliography


Similar publications



Contact ORBi