district heating; energy integration; heat storage; mixed integer linear programming; multi-period; optimization
Abstract :
[en] The implementation of district heating networks into cities is a main topic in policy planning that looks for sustainable solutions to reduce CO2 emissions. However, their development into cities is generally limited by a high initial investment cost. The development of optimization methods intended to draft efficient systems using heating consumption profiles into a prescribed geo-graphic area are useful in this purpose. Such tools are already referred to in the scientific litera-ture, yet they are often restricted to limit the computational load. To bridge this gap, the present contribution proposes a multi-period mixed integer linear programming model for the optimal outline and sizing of a district heating network maximizing the net cash flow based on a geo-graphic information system. This methodology targets a large range of problem sizes from small-scale to large-scale heating networks while guaranteeing numerical robustness. For sake of simplicity, the developed model is first applied to a scaled down case study with 3 available heating sources and a neighborhood of 16 streets. The full-scale model is presented afterwards to demonstrate the applicability of the tool for city-scale heating networks with around 2000 streets to potentially connect within a reasonable computational time of around only one hour.
Disciplines :
Energy
Author, co-author :
Resimont, Thibaut ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Louveaux, Quentin ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Optimisation discrète
Dewallef, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Language :
English
Title :
Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System
Publication date :
06 September 2021
Journal title :
Energies
ISSN :
1996-1073
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Mathiesen, B.V.; Lund, H. Global smart energy systems redesign to meet the Paris Agreement. Smart Energy 2021, 1, 100024, doi:10.1016/j.segy.2021.100024.
Connolly, D.; Lund, H.; Mathiesen, B.V.; Werner, S.; Möller, B.; Persson, U.; Boermans, T.; Trier, D.; Østergaard, P.A.; Nielsen, S. Heat roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014, 65, 475–489, doi:10.1016/j.enpol.2013.10.035.
Fleiter, T.; Elsland, R.; Rehfeldt, M.; Steinbach, J.; Reiter, U.; Catenazzi, G.; Jakob, M.; Rutten, C.; Harmsen, R.; Dittmann, F.; et al. Profile of heating and cooling demand in 2015, Deliverable D3.1 Report, Heat Roadmap Europe 2017. Available online: https://heatroadmap.eu/wp-content/uploads/2018/11/HRE4_D3.1.pdf (accessed on 6 September 2021).
European Commission. An EU Strategy on Heating and Cooling. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0051&from=EN (accessed on 6 September 2021).
Werner, S. International review of district heating and cooling. Energy 2017, 137, 617–631, doi:10.1016/j.energy.2017.04.045.
Andrews, D.; Pardo-garcia, N.; Krook-Riekkola, A.; Tzimas, E.; Serpa, J.; Carlsson, J.; Papaioannou, I. Background Report on EU-27 District Heating and Cooling Potentials, Barriers, Best Practice and Measures of Promotion. Joint Research Centre 2012. Available online: http://www.diva-portal.org/smash/get/diva2:994924/FULLTEXT01.pdf (accessed on 6 September 2021).
International Energy Agency. Governance Models and Strategic Decision-Making Processes for Deploying Thermal Grids Governance Financial. 2017. Available online: http://www.districtenergy.org/HigherLogic/System/DownloadDocument File.ashx?DocumentFileKey=e24e4c4e-3cd8-825e-d1eb-518dc945632c&forceDialog=0 (accessed on 6 September 2021).
Laajalehto, T.; Kuosa, M.; Mäkilä, T.; Lampinen, M.; Lahdelma, R. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network. Appl. Therm. Eng. 2014, 69, 86–95, doi:10.1016/j.applthermaleng.2014.04.041.
Dobos, L.; Abonyi, J. Controller tuning of district heating networks using experiment design techniques. Energy 2011, 36, 4633– 4639, doi:10.1016/j.energy.2011.04.014.
Jie, P.; Zhu, N.; Li, D. Operation optimization of existing district heating systems. Appl. Therm. Eng. 2015, 78, 278–288, doi:10.1016/j.applthermaleng.2014.12.070.
Guelpa, E.; Barbero, G.; Sciacovelli, A.; Verda, V. Peak-shaving in district heating systems through optimal management of the thermal request of buildings. Energy 2017, 137, 706–714, doi:10.1016/j.energy.2017.06.107.
Sartor, K.; Quoilin, S.; Dewallef, P. Simulation and optimization of a CHP biomass plant and district heating network. Appl. Energy 2014, 130, 474–483, doi:10.1016/j.apenergy.2014.01.097.
van der Zwan, S.; Pothof, I. Operational optimization of district heating systems with temperature limited sources. Energy Build. 2020, 226, 110347, doi:10.1016/j.enbuild.2020.110347.
Apostolou, M. Méthodologie Pour la Conception Optimisée des Réseaux de Chaleur et de Froid Urbains Intégrés.HAL Id: Tel 02274400. Université de Recherche Paris Sciences et Lettres Préparée à MINES ParisTech Méthodologie. 2019. Available online: https://pastel.archives-ouvertes.fr/tel-02274400/document (accessed on 06 September 2021).
Mertz, T.; Serra, S.; Henon, A.; Reneaume, J.M. A MINLP optimization of the configuration and the design of a district heating network: Academic study cases. Energy 2016, 117, 450–464, doi:10.1016/j.energy.2016.07.106.
Roland, M.; Schmidt, M. Mixed-integer nonlinear optimization for district heating network expansion. At-Automatisierungstechnik 2020, 68, 985–1000, doi:10.1515/auto-2020-0063.
Falke, T.; Krengel, S.; Meinerzhagen, A.K.; Schnettler, A. Multi-objective optimization and simulation model for the design of distributed energy systems. Appl. Energy 2016, 184, 1508–1516, doi:10.1016/j.apenergy.2016.03.044.
Fazlollahi, S.; Becker, G.; Ashouri, A.; Maréchal, F. Multi-objective, multi-period optimization of district energy systems: IV— A case study. Energy 2015, 84, 365–381, doi:10.1016/j.energy.2015.03.003.
Molyneaux, A.; Leyland, G.; Favrat, D. Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps. Energy 2010, 35, 751–758, doi:10.1016/j.energy.2009.09.028.
Weber, C.; Shah, N. Optimisation based design of a district energy system for an eco-town in the United Kingdom. Energy 2011, 36, 1292–1308, doi:10.1016/j.energy.2010.11.014.
van der Heijde, B.; Vandermeulen, A.; Salenbien, R.; Helsen, L. Integrated optimal design and control of fourth generation district heating networks with thermal energy storage. Energies 2019, 12, 2766, doi:10.3390/en12142766.
Bertrand, A.; Mian, A.; Kantor, I.; Aggoune, R.; Maréchal, F. Regional waste heat valorisation: A mixed integer linear programming method for energy service companies. Energy 2019, 167, 454–468, doi:10.1016/j.energy.2018.10.152.
Omu, A.; Choudhary, R.; Boies, A. Distributed energy resource system optimisation using mixed integer linear programming. Energy Policy 2013, 61, 249–266, doi:10.1016/j.enpol.2013.05.009.
Bordin, C.; Gordini, A.; Vigo, D. An optimization approach for district heating strategic network design. Eur. J. Oper. Res. 2016, 252, 296–307.
Maria Jebamalai, J.; Marlein, K.; Laverge, J.; Vandevelde, L.; van den Broek, M. An automated GIS-based planning and design tool for district heating: Scenarios for a Dutch city. Energy 2019, 183, 487–496, doi:10.1016/j.energy.2019.06.111.
Samsatli, S.; Samsatli, N.J. A general mixed integer linear programming model for the design and operation of integrated urban energy systems. J. Clean. Prod. 2018, 191, 458–479, doi:10.1016/j.jclepro.2018.04.198.
Haikarainen, C.; Pettersson, F.; Saxén, H. A model for structural and operational optimization of distributed energy systems. Appl. Therm. Eng. 2014, 70, 211–218, doi:10.1016/j.applthermaleng.2014.04.049.
Söderman, J.; Pettersson, F. Structural and operational optimisation of distributed energy systems. Appl. Therm. Eng. 2006, 26, 1400–1408, doi:10.1016/j.applthermaleng.2005.05.034.
Dorfner, J.; Hamacher, T. Large-scale district heating network optimization. IEEE Trans. Smart Grid 2014, 5, 1884–1891, doi:10.1109/TSG.2013.2295856.
Luenberger, D.; Ye, Y. Linear and Nonlinear Programming; International Series in Operations Research and Management Science; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9780387745022.
Hilpert, S.; Kaldemeyer, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy Modelling Framework (oemof)—A new approach to facilitate open science in energy system modelling. Energy Strateg. Rev. 2018, 22, 16–25, doi:10.1016/j.esr.2018.07.001.
Poncelet, K.; Hoschle, H.; Delarue, E.; Virag, A.; Drhaeseleer, W. Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Trans. Power Syst. 2017, 32, 1936–1948, doi:10.1109/TPWRS.2016.2596803.
Werner, S. District Heating and Cooling. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013.
The Danish Energy Agency. Energinet Technology Data—Generation of Electricity and District Heating. 2016. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and (accessed on 6 September 2021). 35. ADEME. Les Réseaux de Chaleur et de Froid—État des Lieux de la Filière. 2019. Available online: https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/818-reseaux-de-chaleur-et-de-froid-etat-des-lieux-de-la-filiere-marches-emploiscouts.html (accessed on 6 September 2021).
Résimont, T.; Thomé, O.; Joskin, E.; Dewallef, P. Tool for the Optimization of the Sizing and the Outline of District Heating Networks using a Geographic Information System: Application to a Real Case Study. In Proceedings of the ECOS 2021—The 34th International Conference On Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Taormina, Italy, 27 June–2 July 2021.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.