2-methyl furan: An experimental study of the excited electronic levels by electron energy loss spectroscopy, vacuum ultraviolet photoabsorption, and photoelectron spectroscopy
[en] The vacuum ultraviolet absorption spectrum of 2-methyl furan has been recorded between 5 eV (248 nm) and 9.91 eV (125 nm) and absolute photoabsorption cross sections measured. The electronic excited states of the molecule have also been probed using high resolution electron energy loss spectroscopy. Recorded under electric-dipole conditions, it has confirmed the magnitude of the photoabsorption cross section values and extended the optical oscillator strength values up to 12 eV. Measurements at several scattering angles have allowed the angular behavior of differential cross section ratios for some features in the 5-7.1 eV region to be measured, which in turn have helped in the assignments of electronic states to observed absorption bands. A high-resolution photoelectron spectrum was measured and allowed the two lowest ionization energies to be determined, these have been used in the identification of the related Rydberg states. Vibrational fine structure in the photoelectron spectrum has also been analyzed. The spectrum is dominated by intense pi-pi(*) transitions. Rydberg series associated with the first and second ionization energies have been identified. The effects of symmetry reduction induced on the furan ring by the methyl substitution are also discussed. (C) 2003 American Institute of Physics.
Disciplines :
Chemistry Physics
Author, co-author :
Giuliani, A.
Delwiche, Jacques ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
2-methyl furan: An experimental study of the excited electronic levels by electron energy loss spectroscopy, vacuum ultraviolet photoabsorption, and photoelectron spectroscopy
Publication date :
15 August 2003
Journal title :
Journal of Chemical Physics
ISSN :
0021-9606
eISSN :
1089-7690
Publisher :
American Institute of Physics, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A. Giuliani and M.-J. Hubin-Franskin, Int. J. Mass Spsctrom. 205, 163 (2001).
A. Giuliani and M.-J. Hubin-Franskin, Chem. Phys. Lett. 348, 34 (2001).
C. O. Kappe, S. S. Murphree, and A. Padwa, Tetrahedron 42, 14179 (1997) and reference therein.
S. Glenis, M. Benz, E. Legoff, J. L. Schindler, C. R. Kannerwurf, and M. C. Kanatzidis, J. Am. Chem. Soc. 115, 12519 (1993).
D. S. Mortensen, A. L. Rodriguez, K. E. Carlson, J. Sun, B. S. Katzenellenbogen, and J. A. Katzenellenbogen, J. Med. Chem. 44, 3838 (2001).
F. H. Chang, T.-C. Lin, C.-I. Huang, H.-R. Chao, T.-Y. Chang, and C.-S. Lu, J. Hazard. Mater. A70, 1 (1999).
J. H. Lee and I. N. Tang, J. Chem. Phys. 77, 4459 (1982).
M. C. Byrns, D. P. Predecki, and L. A. Peterson, Chem. Res. Toxicol. 15, 373 (2002).
D. K. Dalvie, A. S. Amit, S. C. Khojasteh-Bakht, R. S. Obach, and J. P. O'Donnnell, Chem. Res. Toxicol. 15, 269 (2002).
E. C. Tuazon, A. Alvarado, S. M. Aschmann, R. Atkinson, and J. Arey, Environ. Sci. Technol. 33, 3586 (1999).
T. Ogata and K. Kozima, Bull. Chem. Soc. Jpn. 44, 2344 (1971).
W. G. Norris and L. C. Krisher, J. Chem. Phys. 51, 403 (1969).
I. G. John and L. Radom, J. Am. Chem. Soc. 100, 3981 (1978).
J. H. Green and D. J. Harrison, Spectrochim. Acta, Part A 33, 843 (1977).
M. Rico, M. Barrachina, and J. M. Orza, J. Mol. Spectrosc. 24, 133 (1967).
A. B. Trofimov, H. Köppel, and J. Schirmer, J. Chem. Phys. 109, 1025 (1998).
P. Linda, G. Marino, and P. Pignataro, J. Chem Soc. B 1971, 1585.
F. Fringuelli, G. Marino, A. Taticchi, G. Distefano, F. P. Colonna, and S. Pignatarro, J. Chem. Soc., Perkin Trans. 2 2, 276 (1976).
B. G. Zykov, N. P. Erchak, V. I. Khvostenko, V. F. Matorykina, and N. L. Asfandiarov, J. Organomet, Chem. 253, 301 (1983).
T. Kobayashi, T. Kubota, K. Ezumi, and C. Utsunomiya, Bull. Chem. Soc. Jpn. 55, 3915 (1982).
T. Veszprémi, L. Nyulaszi, and J. Nagy, J. Organomet. Chem. 331, 175 (1987).
L. Nyulasri, J. Réffy, T. Veszprémi, B. Kovac, T. Cvitas, L. Klasinc, and S. P. McGlynn, Int. J. Quantum Chem., Symp. 25, 479 (1991).
S. Buss and K. Jug, J. Am. Chem. Soc. 109, 1044 (1987).
P. J. Derrick, L. Åsbrink, O. Edqvist, B.-Ö. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys. 2, 471 (1969).
G. Herzberg, Molecular Spectra and Molecular Structure, Electronic Spectra and Electronic Structure of Polyatomic Molecule, Vol. III (Van Nostrand, Inc., Toronto, 1966), p. 577.
L. Serrano-Andrés, M. Merchán, I. Nebot-Gil, B. O. Roos, and M. Fülscher, J. Am. Chem. Soc. 115, 6148 (1993).
M. H. Palmer, I. C. Walker, C. C. Ballard, and M. F. Guest, Chem. Phys. 192, 111 (1995).
A. B. Trofimov and J. Schirmer, Chem. Phys. 224, 175 (1997).
O. Christiansen and P. Jorgensen, J. Am. Chem. Soc. 120, 3423 (1998).
R. Burcl, R. D. Amos, and N. C. Handy, Chem. Phys. Lett. 355, 8 (2002).
A. Modelli, J. Electron Spectrosc. Relat. Phenom. 31, 63 (1983).
A. Modelli, Trends Chem. Phys. 6, 57 (1997).
M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1975), pp. 169 and 224.
L. Nyulászi, J. Mol. Struct, 273, 133 (1992).
C. D. Cooper, A. D. Willimson, J. C. Miller, and R. N. Compton, J. Chem. Phys. 73, 1527 (1980).
J. L. Roebber, D. P. Gerrity, R. Hemley, and V. Vaida, Chem. Phys. Lett. 75, 104 (1980).
J. Delwiche, P. Natalis, J. Momigny, and J. E. Collin, J. Electron Spectrosc. Relat. Phenom. 1, 219 (1972).
F. Motte-Tollet, J. Delwiche, J. Heinesch, M.-J. Hubin-Franskin, J. M. Gingell, N. C. Jones, N. J. Mason, and G. Marston, Chem. Phys. Lett. 284, 452 (1998).
J. H. D. Eland, Photoelectron Spectroscopy, 2nd ed. (Butterworth, London, 1984).
http://www.isa.au.dk/SR/UV1/uv1.htm
F. Motte-Tollet, M.-J. Hubin-Franskin, and J. E. Collin, J. Chem. Phys. 97, 7314 (1992).
R. H. Huebner, R. J. Celotta, S. R. Mielczarek, and C. E. Kuyatt, J. Chem. Phys. 59, 5434 (1973).
J. P. Doering and R. MeDiarmid, J. Chem. Phys. 73, 3617 (1980).
F. Motte-Tollet, D. Messina, and M.-J. Hubin-Franskin, I. Chem. Phys. 103, 80 (1995).
D. S. Sivia and C. J. Carlile, J. Chem. Phys. 96, 170 (1992).
W. A. Goddard and D. L. Huestis, Chem. Phys. Lett. 11, 329 (1971).
A. Bolovinos, J. Philis, E. Pantos, P. Tsekkeris, and G. Andritsopoulos, J. Chem. Phys. 75, 4343 (1981).
A. Giuliani, I. C. Walker, J. Delwiche, S. V. Hoffmann, P. Limão-Vieira, N. J. Mason, B. Heyne, M. Hoebeke, and M.-J. Hubin-Franskin (unpublished).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.